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Abstract

Sampling is a core component for many graphics applications in-
cluding rendering, imaging, animation, and geometry processing.
The efficacy of these applications often crucially depends upon the
distribution quality of the underlying samples. While uniform sam-
pling can be analyzed by using existing spatial and spectral meth-
ods, these cannot be easily extended to general non-uniform set-
tings, such as adaptive, anisotropic, or non-Euclidean domains.

We present new methods for analyzing non-uniform sample distri-
butions. Our key insight is that standard Fourier analysis, which
depends on samples’ spatial locations, can be reformulated into an
equivalent form that depends only on the distribution of their lo-
cation differentials. We call this differential domain analysis. The
main benefit of this reformulation is that it bridges the fundamental
connection between the samples’ spatial statistics and their spectral
properties. In addition, it allows us to generalize our method with
different computation kernels and differential measurements. Using
this analysis, we can quantitatively measure the spatial and spectral
properties of various non-uniform sample distributions, including
adaptive, anisotropic, and non-Euclidean domains.

Keywords: differential domain, analysis, non-uniform, sampling,
spectrum, noise

Links: DL PDF

1 Introduction

Sampling is a fundamental component for a variety of graphics al-
gorithms, with applications ranging from rendering, imaging, an-
imation, to geometry processing [Lloyd 1983; Dippé and Wold
1985; Cook 1986; Mitchell 1987; Turk 1992; Glassner 1994; Alliez
et al. 2002; Dutre et al. 2002; Pharr and Humphreys 2004; Ostro-
moukhov et al. 2004; Kopf et al. 2006; Ostromoukhov 2007; Fu
and Zhou 2008; Balzer et al. 2009; Wei 2010; Öztireli et al. 2010].

Despite the diverse algorithm characteristics and application do-
mains, two common methodologies exist for evaluating the qual-
ity of samples: (1) spatial uniformity, including measures such as
discrepancy [Shirley 1991] and ρ – the normalized minimum spac-
ing between pairs of samples [Lagae and Dutré 2008]; (2) power
spectrum analysis, including radial mean and anisotropy [Lagae and
Dutré 2008]. However, existing methods are primarily designed for
uniform Euclidean domains and can not be easily extended to gen-
eral non-uniform scenarios, such as adaptive, anisotropic, or surface
sampling (see Figure 1). To our knowledge, even though a few
techniques exist for limited situations (e.g. warpable anisotropic
domains [Li et al. 2010] or uniform surface domains [Bowers et al.
2010]), direct analysis of general non-uniform sampling patterns re-
mains an important open problem. Specifically, many applications
require certain forms of non-uniform sampling, and for a given
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Figure 1: Differential domain analysis. Here we demonstrate uniform
(top) and non-uniform (bottom) sampling patterns analyzed by traditional
Fourier spectrum (left) and our method (right). Each group is produced by
10 sets of Poisson disk sampling with rmin = 0.03 and 628 samples per
set. Within each group are the spectrum image, the corresponding radial
mean profile (red curve), and the spatial sample pattern. The non-uniform
sampling follows the importance function from [Ostromoukhov 2007]. As
shown, traditional Fourier method fails to produce meaningful results for
non-uniform sampling: note the excessive low frequency energy and the lack
of typical blue noise characteristic as compared to the uniform sampling
result. Our method analyzes the sample set in differential domain, and thus
can well capture the blue noise characteristic: note the existence of a peak
value around rmin = 0.03 in our radial mean profiles, and their consistent
appearance across both uniform and non-uniform cases.

non-uniform pattern the underlying generation algorithm may be
unknown and thus the analysis must be based on the samples only.
Even when the sampling algorithm is known, its property in general
non-uniform settings may not be reliably inferred from its behav-
ior in the uniform domain (e.g. the hierarchical warping method in
[Clarberg et al. 2005] that may introduce anisotropic stretch).

In this paper, we present new methods for analyzing non-uniform
sample distributions, including adaptive, anisotropic, and surface
domain samplings. Our key insight is that standard Fourier spec-
trum analysis, which depends on sample locations, can be refor-
mulated into an equivalent form that only depends on the distri-
bution of sample location differentials. We call this differential



domain analysis. The main benefit of the reformulation is that it
bridges the fundamental connection between samples’ spatial statis-
tics and their spectral properties. This makes it possible to extend
our method to non-uniform domains, by using the corresponding
differential measurements that we present in the paper. Moreover,
we can generalize our method with different computation kernels.
For example, in this paper we focus on using the Gaussian kernel,
which estimates a smoothed histogram of the location differentials.
Finally, we present spatial and spectral analysis results using our
method for different sampling methods in various non-uniform set-
tings. In sum, our paper has the following contributions:

• A reformulation of standard Fourier spectrum analysis into a
form that depends on sample location differentials.

• A generalization of this basic formulation, including differ-
ent distance transformations for various domains, and range
selection for better control of quality and speed.

• Applications in spectral and spatial analysis for non-uniform
sample distributions.

2 Previous Work

Spatial analysis Various spatial quantities have been proposed
to measure the spatial distribution properties of samples [Dale et al.
2002]. One choice is the discrepancy [Shirley 1991], which is a
scalar measure for sample equidistribution. Another is the relative
radius ρ = rmin

rmax
defined in [Lagae and Dutré 2008], where rmin is

the minimum spacing between any pair of samples, and rmax is the
average inter-sample distance computed from the maximum pack-
ing of a given number of samples. Lagae and Dutré [2008] applied
ρ to measure the spatial uniformity of blue noise samples and pro-
posed that the ideal ρ should be between [0.65 0.85]: too small a ρ
indicates lack of uniformity (e.g. white noise for which ρ is close to
0) and too large a ρ indicates potential regular patterns (e.g. hexag-
onal lattice as a result of unconstrained Lloyd relaxation). To our
knowledge ρ has been applied only to uniform sampling so far, and
we show in this paper how it can be extended to non-uniform sam-
pling with our method.

Other spatial measures, especially in the context of meshing, in-
clude the minimum and histogram of triangle areas and angles [Fu
and Zhou 2008]. Some of these measures can be applied for re-
stricted non-uniform settings (e.g. angles for isotropic domains),
while others cannot (e.g. angles for anisotropic domains or areas
for adaptive domains).

Spectral analysis Fourier spectrum analysis is a common
method for evaluating sample distributions and has been shown to
be effective in detecting sampling artifacts [Ulichney 1987; Cook
1986; Mitchell 1987; Kopf et al. 2006; Ostromoukhov 2007; La-
gae and Dutré 2008; Wei 2008; Wei 2010; Li et al. 2010; Bowers
et al. 2010]. However, except for a few rare cases discussed below,
Fourier analysis so far has been applied primarily to uniform Eu-
clidean domain sampling. Li et al. [2010] analyzed anisotropic dis-
tributions by warping the samples back into a uniform domain fol-
lowed by standard Fourier spectrum analysis. Thus, the method is
applicable only to anisotropic distributions with analytically invert-
ible global warps. Bowers et al. [2010] applied spectral mesh basis
[Karni and Gotsman 2000] to analyze uniform surface samples, but
their method has several practical limitations caused by numerical
computation (such as it can only measure a few hundred samples).
In addition, it is not applicable to adaptive or anisotropic sampling.
To our knowledge, this work proposes the first method that can per-
form spectral analysis for general non-uniform sampling.

A possible alternative solution is to derive generalized Fourier ba-
sis to extend standard Fourier analysis to non-uniform domains.
For example, under isotropic surface sampling, one could apply the
adaptive spectral mesh basis presented in [Huang et al. 2008] to an-

alyze adaptive surface samples. This can be treated as an extension
to [Bowers et al. 2010]. We are not aware of any prior publication
using this approach. But even if the idea works, it is likely to suffer
from similar practical limitations as [Bowers et al. 2010], due to the
large number of numerical basis functions that must be computed.
Moreover, it remains unclear how to extend such an approach for
anisotropic sampling. In contrast, our differential domain method
is general and does not rely on the existence of any Fourier basis
set. It is also fast to compute and can easily handle a large number
of samples. Furthermore, as shown in our paper, even for uniform
sampling our method can outperform traditional Fourier analysis
methods in quality or speed.

Other analysis methods In spatial statistics, several methods
exist [Dale et al. 2002; Bonetti and Pagano 2005] to deduce the
distribution property of samples via autocorrelation, inter-point dis-
tance, variogram, or the Ripley’s K function [Ripley 1977]. These
methods are closely related to our differential measurement ap-
proach, but the main differences are: 1) they are typically used to
verify that a particular distribution conforms with uniform white
noise; 2) they are only applicable to uniform domains while we
focus on non-uniform domains. Another related work is the sec-
ond moment measure discussed in [Lau et al. 2003]. However, the
connection of this measure to the Fourier spectrum has not been re-
vealed, and the method has not been applied for non-uniform sam-
pling. Other related methods include non-uniform Fourier trans-
form [Dutt and Rokhlin 1993; Potts et al. 2000] and local image
analysis/statistics. To our knowledge these methods mainly focus
on analyzing range (e.g. color) properties . This differs from our
goal of analyzing domain (i.e. spatial location) properties.

3 Core Ideas

This section presents our core ideas. We first show that given a sam-
ple set, its Fourier power spectrum is completely determined by the
histogram (i.e. distribution) p(d) of the sample location differen-
tials d through a cos transform (Equation 5). Then, by replacing
the cos kernel with a Gaussian kernel, we can directly evaluate a
smoothed histogram of p(d) (Equation 6). Finally, we show how
the use of p(d) allows us to extend the analysis to general non-
uniform sample domains (Equation 9).

Fourier power spectrum Let {sk}k=0 to N−1 be a set of N
samples in an n dimensional space. Its Fourier transform F (f),
with f being the frequency vector, is defined as follows:

F (f) =

N−1∑
k=0

e−2πi(f ·sk)
(1)

where · denotes the vector inner product. For the purpose of analyz-
ing sample patterns, we are interested in the power spectrum P (f)
[Ulichney 1987; Bracewell 1999; Lagae and Dutré 2008], which
measures the squared magnitude of F (f) :

P (f) = |F (f)|2 = Pr(f) + Pi(f)

Pr(f) =
1

N

(
N−1∑
k=0

cos(2πf .sk)

)2

Pi(f) =
1

N

(
N−1∑
k=0

sin(2πf .sk)

)2

(2)

Differential representation Using the product to sum rule in
trigonometry, we can rewrite Equation 2 into the following form:

P (f) =
1

N

N−1∑
k=0

N−1∑
j=0

cos
(
2πf .(sk − sj)

)
(3)



An alternative way to derive this equation is by using discrete auto-
correlation and the Wiener-Khinchin theorem [Couch 2001]. Note
that unlike Equation 2 which depends on the absolute coordinates
of samples, Equation 3 only depends on the relative coordinates be-
tween every two samples, which we call pair-wise sample location
differentials. This is a key observation that allows us to generalize

the analysis to non-uniform sampling. By representing (sk−sj) as

dk,j , we can express Equation 3 as:

P (f) =
1

N

N−1∑
j,k=0

cos(2πf .dj,k) (4)

Integral form As Equation 4 sums over all pairs of samples, given

sufficient samples, we can collect the statistics of dk,j , and rewrite
the equation as an integral form:

P (f) = N

∫
Ωd

cos(2πf .d) p(d) δd (5)

where p(d) is the probability density function of d, and Ωd is the
differential domain for d derived from the underlying sample space
Ω. Note that this integral is simply a cosine transform of p(d).
This equation means that given any sample set, its Fourier power
spectrum is completely determined by p(d) via a cosine transform.
Thus it bridges the fundamental connection between the samples’
spatial statistics and their spectral properties.

General kernel Since Equation 5 is essentially a weighted inte-
gral of cos(2πf) by p(d), we can generalize it with an arbitrary
kernel κ as follows:

P (q) = N

∫
Ωd

κ(q,d) p(d) δd (6)

where q represents a general parameter set for κ. For example, in
Fourier transform q stands for the frequency. By picking a different
kernel κ, we can choose to focus on analyzing different aspects of
the sample distribution. When κ is a cos function, Equation 6 be-
comes traditional Fourier spectrum. In our analysis, we will choose
a Gaussian kernel that essentially performs a kernel density estima-
tion [Scott 1992] of p(d). For notational simplicity, we will stick
to the P symbol even though it might not actually measure “power”
when a non-cos kernel is used.

Range selection Instead of taking into account all d pairs as in
Equation 6, for computational reasons we can also look at selected
ranges of d values. In general, we can incorporate a range selection
function ξ into Equation 6 as follows:

P (q) = N

∫
Ωd

κ(q,d) p(d) ξ(d) δd (7)

One common approach is to look at only d = s − s′ with both s
and s′ within each other’s local neighborhood:

ξ(d = s− s′) =
{
1 if max(μ(s, s′), μ(s′, s)) ≤ ε

0 else
(8)

where μ(s, s′) is a local distance measure of s′ with respect to
the local frame centered at s, and ε is a global constant control-
ling the local neighborhood size. In uniform Euclidean domains,
μ(s, s′) = |s − s′|. For normalization, we usually divide μ by a
constant which depends on the desired sampled density. For exam-
ple, the constant may be rmax from the maximum packing of a give

number of samples. We will provide the specific formulations of μ
for other scenarios in Section 5.1, including adaptive, anisotropic,
and surface domains. The value of ε will depend on particular appli-
cation needs, including computation speed (it is faster to consider
only a shorter range d values) and quality (e.g. detecting anomalies
at a certain d range). It is also possible to define ξ in other ways,
e.g. with a smooth instead of binary profile.

Non-uniform domain For non-uniform domains, we can further
extend Equation 7 as follows:

P (q) = N

∫
Ωd

κ(q, χ(s, s′,d)) p(d) ξ(d) δd (9)

where χ : Ωd → Ωd is a differential domain transformation func-
tion that locally warps each d from a non-uniform Ωd to a (hy-
pothetical) uniform Ωd. By choosing the proper χ, κ, and ξ, we
can analyze transformed domain properties for non-uniform sam-
ple distributions. Details will be presented in Section 5.1.

4 Analysis

Comparisons with Fourier spectrum analysis The first ques-
tion we need to answer is: how our method relates and compares
to traditional Fourier spectrum analysis? As shown in Section 3,
Fourier spectrum analysis can be considered as a special case of
our method with a cos kernel in Equation 6. In Figure 2, we com-
pare our method with Fourier spectrum analysis under a variety of
different sampling methods, including white noise (uniform ran-
dom), regular grid, jittered grid [Cook 1986], Poisson disk [Cook
1986], Lloyd relaxation [Lloyd 1983], CCVT [Balzer et al. 2009],
and Polyominoes [Ostromoukhov 2007]. We choose these meth-
ods because they are common and possess a diverse repertoire of
properties that are well known in the sampling literature. Since
Fourier analysis is not applicable to general non-uniform domains,
we use uniform domain sampling for this comparison to obtain
ground truth information. As shown, our method relates well with
Fourier spectrum analysis, capturing the key properties of all the
methods. These include: the uniform and flat distribution of white
noise; regular spikes in regular grid sampling; blue noise with small
and large central “clear zones” for jittered and Poisson-disk sam-
plings, respectively; potential hexagonal bias in Lloyd relaxation;
a better relaxation method by CCVT; and the potential structured
patterns in Polyomino sampling.

Kernel selection Our basic formulation in Equation 6 allows dif-
ferent choices for the computation kernel κ. We usually choose a
Gaussian kernel defined as:

κ(q,d) = e
−(q−d)2

σ2 (10)

where σ is the standard deviation and q the query location differen-
tial. For a Gaussian kernel, we choose the output resolution so that
on average each grid cell receives at least one sample, and we set σ
to be 1 cell wide to ensure enough coverage and smoothness.

In contrast, a cos kernel may amplify some information while ob-
scure others. As an example of the amplification, let’s look at the
Poisson disk samples in Figure 2. In this example, notice that p(d)
contains a peak value at |d| = rmin, indicating a high probabil-
ity density that the distance between two samples is around rmin.
Next, the Fourier spectrum shows the well-known undulation pro-
file, which is in fact caused by the peak value of p(d). Specifically,
from Equation 5 we can see that a cos kernel will produces peaks
around f = m

rmin
and troughs around f = m+0.5

rmin
for any posi-

tive integer m. A Gaussian kernel, in contrast, displays the main
peak clearly without undulations. Therefore it can manifest the dis-
tribution properties more clearly, e.g. more apparent characteristic
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Fourier spectrum analysis our method with Gaussian kernel

Figure 2: Comparisons between traditional Fourier spectrum analysis and our method under uniform domain with different sampling methods. Within each
group are the spectrum image, radial mean, and anisotropy. The left group shows results generated by Fourier spectrum analysis while the right group by our
method with a Gaussian kernel and ε = 10. From top to bottom: white noise, regular grid, jittered grid, Poisson disk with rmin = 0.03, Lloyd relaxation,
CCVT [Balzer et al. 2009], and P-pentomino [Ostromoukhov 2007]. All cases are averaged over 10 runs each with ∼ 720 samples. For several blue noise
patterns the anisotropy values of our method within the range of rmin are not shown as these regions are empty (i.e. no sample pairs fall within this range).

structures for CCVT as in Figure 2. Another advantage of using a
Gaussian kernel is that it always returns a non-negative result for
Equation 6 regardless of the d distribution p(d) and range selec-
tion. A cos kernel, in contrast, might produce negative values if not
all d pairs are considered.

Range selection The range selection function ξ (and the neigh-
borhood size ε) plays an important role in deciding the speed and

quality of our method. Regarding speed, collecting all d pairs can
be expensive as it incurs an O(N2) time cost for N samples. Re-
garding quality, for general non-uniform sampling there might not
exist an accurate χ for long range d values. To resolve both is-
sues, we have found it beneficial to consider only local d pairs as
in Equation 8. As shown in Figure 2, ε = 10 already suffices to
capture the major characteristics of common sample patterns. In
our experience ε in the range of 10∼12 works well in practice.



In theory a local range selection may miss long range structural ar-
tifacts. In practice, the impact of such artifacts is usually small,
as they could contain no more than ε−nN samples in an n dimen-
sional space. For example, with ε = 10 and n = 2, they can occupy
no more than 1% of the total samples. To illustrate this, consider
the pathological case where a regular grid is embedded within a
Poisson disk sample set. This can be done by using a regular grid
(with spacing d) as the initial samples, then performing Poisson
disk sampling (with minimum spacing rmin < d) as usual. To de-
tect such artifacts, our ε must satisfy ε rmin > d. Thus, increasing
d requires increasing ε as well. However, as d increases, the total
number of offending samples and their contributions to p(d) will
decrease, reducing the total artifact energy. The theoretical max-
imum ratio ε−n above is derived from assuming a maximal pack-
ing of d-spaced samples. Empirically, we have also found that our
method is not worse than traditional Fourier analysis in detecting
hidden structures; see the supplementary material for more details.

Computational complexity With N samples and F spectrum
resolution in any given dimension, traditional Fourier power spec-
trum analysis has computational complexity O(NFn) in an n di-
mensional space Ω. This is assuming brute force computation in the
continuous domain without any discrete approximation [Schlomer
and Deussen 2010]. Although accelerations exist for computing
non-uniform FFT (see e.g. [Potts et al. 2000]), they are mostly ap-
proximate methods. Using a Gaussian kernel, our method has com-
plexity O(Nεnσn), where σ is the Gaussian standard deviation and
ε the range selection constant. Since εσ is usually smaller than F ,
our method is computationally faster than traditional Fourier anal-
ysis. For example, in Figure 2 our method takes 1.4 seconds to
accumulate each sample set while Fourier analysis takes 2.1 sec-
onds, implying a 33% speedup using our method. The timing is
measured on a PC with 2.5GHz CPU and 4GB memory. As a fur-
ther acceleration, we can also select a uniform random subset of the
d pairs, which can still result in the same distribution without bias.

Radial measures Similar to standard Fourier spectrum analysis,
we can compute the circular average and variance of p(d). The
former gives the radial mean, indicating the overall distance-based
property of p(d); the latter gives the anisotropy, which reveals if
there is any directional bias/structure in the distribution.

Since p(d) is evaluated based on a large number of d pairs, we
need to properly normalize it in order to compare different sample
sets. Assume that we have computed p(d) with M histogram bins
from Q number of sample pairs. We normalize p(d) with M/Q so
that the expected value of each bin is 1. For white noise samples,
this normalization will result in an expected value of 1 for the radial
mean, as shown in the first sample of Figure 2.

To derive the expected anisotropy, we need to analyze the circular
variance of p(d). Let’s again use white noise as an example: in this
case, each bin of p(d) has an independent value that can be modeled
as a binomial distribution where the success probability of each trial
is ρ = 1/M . Therefore the expected anisotropy can be calculated
as the variance of this binomial distribution, which turns out to be
(M − 1)/Q, or 10 log10[(M − 1)/Q] dB equivalently. Details of
the derivation can be found in the supplementary material. Note that
unlike traditional Fourier spectrum analysis, the anisotropy here is
not directly related to the number of test runs.

If a general kernel is employed, such analysis may not be available.
In that case, we can empirically compute reference radial mean and
anisotropy from a white noise sampling of the same domain with
identical parameters.

5 Applications

Now we present several applications of our core ideas in Section 3.

5.1 Spectral Analysis

Here, we apply Equation 9 to analyze non-uniform sample dis-
tributions, including adaptive, anisotropic, and non-Euclidean do-
mains. Our key idea is to derive a proper χ and μ considering only
d = s− s′ that satisfies ξ (see discussions around Equation 7).

Exact χ For special circumstances where the transform function
χ can be derived exactly, we can apply it directly to Equation 9. For
example, if the output domain is warped from a uniform domain via
a (forward) warp function ϕ [Li et al. 2010], we have

χ(s, s′, s− s′) = ϕ−1(s)− ϕ−1(s′) (11)

However, such exact χ is usually not available for general non-
uniform domains, for which we discuss solutions below.

Isotropic Euclidean domain For isotropic but adaptive sample
domains with a scalar importance field I(.), we design χ as follows:

χ(s, s′, s− s′) =
2E (r)

r(s) + r(s′)
(s− s′) (12)

where r(.) is the distance field derived from I(.) with r(.) ∝
I(.)

−1
n in a n-dimensional sample space Ω, and E (r) is the mean

of r(.) over Ω (derived through I(.)). Equation 12 essentially per-
forms a local scaling of d = s− s′ via r(.).

Since r(.) is defined locally for every point, we can define the local
distance measure μ as follows:

μ(s, s′) =
|s− s′|
r(s)

(13)

Combining this equation with Equation 8, we have

ξ(d = s− s′) =
{
1 if |s− s′| ≤ ε×min(r(s), r(s′))
0 else

(14)

Now that χ, μ, and ξ are properly defined, we can enable our
method for isotropic adaptive sampling. Figure 1 and Figure 3
show our results for a variety of isotropic sample domains, includ-
ing Gaussian ramp, Gaussian blob, the density functions from [Os-
tromoukhov 2007] and [Balzer et al. 2009], and a complex bitmap
image of van Gogh’s portrait. For sampling method we choose
white noise and Poisson disk because they are both common, have
well-known characteristics, and have simple algorithms to compute
adaptive samples. As shown, our method not only captures the
known characteristics of the sampling methods (e.g. flat and peaky
radial mean profiles for white-noise and Poisson-disk respectively)
but also maintains consistent behavior across different sample do-
mains, including: 1) the Gaussian ramp that has distinct distribu-
tions in the vertical and horizontal directions; 2) the Gaussian blob
with radially symmetric d distribution; 3) the density functions in
[Balzer et al. 2009; Ostromoukhov 2007] with complex structures;
4) the van Goth portrait with significant complexity.

Anisotropic Euclidean domain For anisotropic domains, χ will
involve a general local Jacobian J [Li et al. 2010] as follows:

χ(s, s′, s− s′) =
1

E (λ)

(
J−1(s) + J−1(s′)

2

)−1

(s− s′)T (15)

where E (λ) is the mean of the eigenvalues of J(.) over Ω. Notice

that we use the mean of J−1 instead of J so that Equation 15 will
reduce to Equation 12 for isotropic cases, i.e.

J(s) = I · 1

r(s)
(16)
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white noise Poisson disk with rmin = 0.03

Figure 3: Isotropic adaptive sampling analysis via our method. The left group is generated by white noise while the right group by Poisson disk sampling.
Within each group are the spatial sample set, spectrum image, radial mean, and radial anisotropy. From top to bottom: 1D Gaussian ramp, 2D Gaussian blob,
the density function e−20(x2+y2) + 0.2 sin2(πx) sin2(πy) in [Balzer et al. 2009], and the van Gogh portrait. The ramp and blob cases are produced with
10 sets with ∼ 2500 samples per set in a [0 2]2 domain, the density case with 4 sets with ∼ 10000 samples per set in a [0 4]2 domain, and the portrait case
with 1 set with ∼ 40000 samples in a [0 8]2 domain. ε = 12.

where I is the identity (Jacobian) matrix. Following the method-
ology in [Li et al. 2010], we can extend Equation 8 for anisotropic
sampling as follows:

μ(s, s′) = |J(s)(s− s′)T| (17)

ξ(d = s− s′) ={
1 if max(|J(s)(s− s′)T|, |J(s′)(s− s′)T|) ≤ ε

0 else
(18)

It can be easily verified that Equation 18 reduces to Equation 14
with isotropic Jacobians (Equation 16).

Figure 4 demonstrates our results for anisotropic sampling, includ-
ing four basic warps: scale, shear, perspective, and terrain [Wol-
berg 1994] as analyzed in [Li et al. 2010], and a more complex
anisotropic field derived from a bitmap image. Similar to the
isotropic case, we use white noise and Poisson disk distributions
because they both have well-known statistical properties and can be
produced over general anisotropic domains via methods in [Li et al.
2010]. As shown in Figure 4, our method well captures the prop-
erties of both white noise and Poisson disk sampling over a variety
of anisotropic domains. Note that the approach by [Li et al. 2010]
requires warping the anisotropic samples to a uniform domain and
perform traditional Fourier analysis there. Our method, in contrast,
can analyze samples directly in the anisotropic domain, without re-
quiring analytic invertible warps. Thus our method is more general

than [Li et al. 2010] and can be applied to general anisotropic do-
mains such as Jacobian fields derived from bitmap images.

Sampling rate As described in [Li et al. 2010], their anisotropic
sampling methods approximate geodesic distances via local Jaco-
bians and thus require sufficient sampling rates to work well. In
Figure 5, we apply our methods to situations for which this re-
quirement is not observed. We use the sinusoidal terrain warp
from Figure 4 as it is both non-trivial to sample and has analytic
inverse warps so we can apply Fourier analysis to generate com-
parisons. As shown in Figure 5, both Fourier analysis and our
method can detect nuanced artifacts when the sampling rate is in-
sufficient: note the anisotropic ripples in the Fourier spectrum im-
age and anisotropic boundaries of the inner hole in the result of our
method. However, at 2500 samples the anisotropy profile of Fourier
analysis starts to become flat, whereas our method can still detect
a high amount of anisotropy near |d| = 0.03. At sufficiently high
sampling rate such as used in Figure 4, both methods will result in
flat anisotropy. This echoes our observation in Section 4 that our
method may be able to manifest artifacts more clearly than Fourier
spectrum analysis.

Figure 5 also illustrates the potential inaccuracy of our χ for han-
dling long range d values. As shown in the 625 sample case, the
combination of rmin = 0.03 and ε = 12 results in a total neighbor-
hood size of 0.36. This is large enough to straddle over regions with
significant changes in the terrain sinusoidal, causing inaccuracy in
the long range χ values manifested by the darker corners in our
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Figure 4: Anisotropic sampling analysis via our method. The left group is generated by white noise while the right group by Poisson disk sampling. Within
each group are the spatial sample set, spectrum image, radial mean, and radial anisotropy. From top to bottom are the 4 warps from [Li et al. 2010]: scale,
shear, perspective, and terrain, as well as the van Goth portrait image. The scale and shear cases are produced with 10 sets with ∼ 2500 samples per set in a
[0 2]2 domain, the perspective case with 4 sets with ∼ 10000 samples in a [0 4]2 domain, the terrain and portrait cases with 1 set with ∼ 40000 samples in
a [0 8]2 domain. ε = 12.

image result. However, such long range artifacts only happen at in-
sufficient sampling rate, which already causes short range artifacts
that can be successfully detected by our method (see Figure 5).

Surface domain For surface sampling, an existing technique for
analysis is via the spectral mesh basis [Bowers et al. 2010]. How-
ever, such a method is restricted to uniform surface sampling and
can suffer from numerical computation issues that limit the max-
imum number of allowable samples to only a few hundred. Our
method can be easily applied for analyzing surface samples with-
out these restrictions. The basic idea is to use surface geodesics to
measure d = s− s′:

s− s′ =
g(s, s− s′) + g(s′, s− s′)

2
(19)

where g(s, s − s′) is the geodesic differential s − s′ with respect
to the local frame centered at s. For uniform surface sampling, this

allows us to rewrite the previous equations for χ, μ, ξ as:

χ(s, s′, s− s′) =
g(s, s− s′) + g(s′, s− s′)

2
(20)

μ(s, s′) =
|g(s, s− s′)|

rmax
(21)

ξ(d = s− s′) =
{
1 if max(|g(s, s− s′)|, |g(s′, s′ − s)|) ≤ εrmax

0 else

(22)

For other non-uniform settings, such as adaptive and anisotropic
surface sampling, we can similarly modify their corresponding
equations defined for χ, μ, and ξ, by changing the distance met-
ric from Euclidean to geodesic.

To fully define d, we also need to provide a surface orientation field
and a local parameterization. For the former, there is a rich litera-
ture in previous work on designing surface orientation fields with
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Figure 5: Analysis for different anisotropic sampling rates. Here, we apply the anisotropic dart throwing algorithm in [Li et al. 2010] to the terrain warp
domain with different sampling rates: the top case is computed from 64 sets each with ∼ 625 samples over a [0 1]2 domain whereas the bottom case from 16
sets each with ∼ 2500 samples over a [0 2]2 domain. We set rmin = 0.03, and analyze the sample sets through both traditional Fourier spectrum analysis
(on the left, by warping the samples back into a uniform domain as in [Li et al. 2010]) as well as our method (on the right, with ε = 12). Within each group
are: spatial samples (warped back into uniform domain for Fourier analysis), spectrum image, and radial mean/anisotropy.

desired properties [Palacios and Zhang 2007; Fisher et al. 2007].
Our method simply requires a sufficiently smooth orientation field
that neither introduces nor obscures sampling artifacts. For exam-
ple, a random orientation field may completely obscure any direc-
tional structure in the underlying samples, due to inconsistent lo-
cal frames. In our current implementation, we follow the standard
method of taking the cross product of the surface normal with a
pre-defined global vector. This works well in practice. For defining
local parameterization, our method requires a proper parameteriza-
tion method that preserves local angles and geodesics. For this pur-
pose, the discrete exponential map [Schmidt et al. 2006] is an excel-
lent choice, as it is both fast and accurate. Specifically, we set the
decal radius at each sample s according to ξ, then run the discrete
exponential map algorithm to compute the geodesic coordinates
(u, v) of every neighbor sample s′ with respect to the center sam-
ples s. The vector (u, v) directly corresponds to d = s − s′. The
magnitude of the vector gives the geodesic distance between s and
s′. Note that our approach does not require any global parametriza-
tion, therefore is feasible for arbitrary, unparametrized shapes.

In Figure 6 we show the results of our approach applied to a varity
of models. These models are are selected due to their diverse shapes
and topological properties. We normalize the area of each model to
be 1, and tested them with three different sampling methods: white
noise, uniform, and non-uniform Poisson Disk sampling. White
noise samples are generated with uniform random distribution on
the surface. Since such sampling does not require estimating sur-
face geodesics, it can be used to verify our approach. The top-left
three examples in Figure 6 show the analysis of white noise sam-
ples. As expected, the radial mean and anisotropy plots are both flat,
indicating a white noise distribution. Note that the use of discrete
exponential map (or other proper local parametrization method) is
critical: a naive approach, such as directly projecting the Euclidean
vector, would cause the estimated p(d) to be distorted either radi-
ally or angularly, leading to non-flat radial means or anisotropy.

For uniform Poisson Disk sampling, we set rmin = 0.015 and use
the method presented in [Bowers et al. 2010] to compute samples
for all models. This results in ∼ 3000 samples per model. The anal-
ysis results are shown on the top-right and bottom-left of Figure 6.
Despite each model’s different shape and topology, the radial mean
and anisotropy plots are consistent and agree with the expectation.

Lastly, the bottom-right three examples in Figure 6 show non-
uniform Poisson Disk sampling. We set r(x) ∝ 1

1+4·κ2(x)
, where

κ is the mean curvature, and we normalize all the r(.) values so that

their average (via the density space r−n) is 0.015. As shown in the
analysis results, our approach can successfully verify the distribu-
tion property of the samples, despite the spatial non-uniformity.

The method described here performs analysis directly on sur-
faces. Another possibility is to parameterize the surface into a 2D
anisotropic domain [Li et al. 2010] and analyze sample distribu-
tions via our anisotropic method. However, this requires surface
parametrization and the handling of chart boundaries, incurring sig-
nificantly more complexity than a direct surface analysis approach.

5.2 Spatial Analysis

We can also easily apply our methods to extend the spatial uni-
formity measure to non-uniform domains. Specifically, the unifor-
mity measure is defined as ρ = rmin

rmax
[Lagae and Dutré 2008],

where rmin is the minimum spacing between any pair of sam-
ples and rmax is the average inter-sample distance computed from
the maximum packing of a given number of samples. To handle
non-uniform distributions, we simply compute rmin from the χ-
transformed d values as described in Section 5.1. Table 1 compares
our method with directly measured ρ values without any χ correc-
tion. We use Poisson disk sampling as the benchmark as its rmin is
known. As shown, our method accurately measures ρ across differ-
ent non-uniform domains and distributions.

6 Limitations and Future Work

The main limitation of our method is that the requirement of a suf-
ficiently accurate differential domain distance transform χ(s, s′).
Although it is sometimes possible to define such a transform for the
entire domain Ωd under special cases (e.g. analytical warps), for
general non-uniform settings, obtaining an accurate χ is currently
only possible for local sample pairs (s, s′). Thus, our method might
not be able to capture the global d properties, potentially missing
the detection of certain long-distance biases. One potential future
direction is to investigate the possibility of an accurate estimation
of χ for arbitrary sample pairs under general non-uniform settings.

However, as shown in the paper, both theoretical and empirical evi-
dences suggest that our method is no less discriminative than tra-
ditional Fourier analysis. In fact, for most sampling algorithms
we are interested in, sample pairs over long distances tend to be
uncorrelated, thus the local d statistics is usually sufficient to cap-
ture the characteristics of these sampling patterns. Moreover, var-
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Figure 6: Surface sampling analysis via our method. Here we apply our analysis on samples generated on different surfaces. Each case is produced from 8
sets with ∼ 3000 samples each. We set rmin = 0.015 for Poisson disk sampling, and use ε = 10 in all examples.

2D case direct ρ our ρ
Figure 1 density 0.32 0.70

Figure 3

ramp 0.51 0.70
blob 0.37 0.70
density 0.22 0.70
portrait 0.44 0.70

Figure 4

scale 0.50 0.70
shear 0.43 0.70
perspective 0.09 0.70
terrain 0.31 0.70
portrait 0.17 0.70

surface case
Euc ρ geo ρ our ρ

(Figure 6)

uniform

eight 0.76 0.76
bunny 0.69 0.76
hand 0.72 0.76
venus 0.74 0.76
genus3 0.70 0.76
head 0.66 0.76

adaptive
venus 0.15 0.15 0.76
genus3 0.16 0.16 0.76
head 0.16 0.16 0.76

Table 1: Spatial measure ρ for non-uniform sam-
pling. We compare ρ computed directly vs. using our
method. We use Poisson disk sampling as its rmin is
known. The sample distributions are produced with a
target ρ = 0.70 for the 2D cases and ρ = 0.76 for
the surface cases; thus the measured ρ values cannot
exceed these. As shown, our method accurately mea-
sures ρ across a variety of sample domains and dis-
tributions, while direct measurements (including both
Euclidean and uncorrected geodesic distances for the
surface case) usually under-estimate the ρ values.



ious prior sampling techniques have exploited local information to
successfully produce high quality samples. Examples include dart
throwing, relaxation, tiling [Kopf et al. 2006], and spectral sam-
pling [Öztireli et al. 2010]. We believe our differential domain
analysis will shed light on why these methods works well, and the
intrinsic nature of these methods.

Another direction for future research is to investigate other compu-
tation kernels κ. For example, there may be scenarios that prefer
kernels with multiresolution support, such as wavelets.

Finally, our idea can potentially benefit other applications, in ad-
dition to the ones shown in this paper. Examples include analyz-
ing higher dimensional sample patterns, and designing novel sam-
pling algorithms that can synthesize samples with desired distribu-
tion properties at fast computation speed.
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Supplementary Material

(For the electronic version of the paper.)

A Hierarchical Warping

Here we provide evidence where a sampling method that behaves
well in the uniform domain might not remain so in a non-uniform
domain. For this, we use the hierarchical warping method in [Clar-
berg et al. 2005] which produces adaptive sample patterns by warp-
ing an initial set of uniform samples. The method performs well in
uniform sampling because in that case it would not alter the initial
samples. However, for adaptive sampling (under a given impor-
tance field), the hierarchical warping can easily introduce signifi-
cant anisotropy. Such artifacts cannot be detected by existing meth-
ods as they only work in uniform domains. Our method, in contrast,
can easily detect such artifacts, as demonstrated in Figure 7. Note
that [Clarberg et al. 2005] is not specifically designed for blue noise
sampling: we employ it here as a simple example to demonstrate
that analysis performed in the uniform domain does not necessarily
transfer to the behavior of an algorithm in the non-uniform domain.
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Poisson disk [Clarberg et al. 2005]
init distribution for

[Clarberg et al. 2005]

Figure 7: Analysis for hierarchical warping. We perform our differential
domain analysis to both adaptive Poisson disk sampling (left) and hierar-
chical warping [Clarberg et al. 2005] (right) using a very simple impor-
tance field as in Figure 5(b) of [Clarberg et al. 2005] (with relative impor-
tance 0.6, 0.2, 0.05, 0.15 for each quarter cell). Notice the high amount of
anisotropy in our analysis result for [Clarberg et al. 2005] even though it
starts with a reference initial sample pattern produced by uniform Poisson
disk sampling (right).

B Radial Measures

Here we give a theoretical analysis of the expected anisotropy in the
radial measures of our approach. We use white noise as an exam-
ple as it is easy to analyze. First, note that the anisotropy measures
the circular variance, and it should relate to the number of sample
pairs Q. In particular, as Q approaches increases, the distribution
function p(d) becomes flat, and hence the variance on any con-
centric circle will approach zero. This is the similar to averaging
periodograms in Fourier spectrum analysis, as doing so will reduce
the variance of values. Next, the anisotropy should also relate to the
number of histogram bins M that we use to represent p(d), because
using less bins is equivalent to averaging sample values.

To derive the anisotropy of p(d), consider that at any neighbor-
hood, the distribution of nearby samples is white noise, hence
the distances between them are also white noise. Thus collect-
ing Q pair values and place them in M disjoint bins can be mod-
eled as a binomial process: at any particular bin, a random pair
value has a probability of ρ = 1

M
landing in that bin, and all

bins are independent. Thus for each bin, there is a probability of

C(Q, i)ρi(1 − ρ)M−i that the total number of samples that fall
into it is i, where C(Q, i) denotes Q select i. The expectation of
this binomial process is Q × ρ = Q/M , hence we normalize the
value of each bin by M/Q such that the expected value of each

bin is 1. Therefore with probability of C(Q, i)ρi(1 − ρ)Q−i a bin
has value M/Q i. It turns out that the variance of such a binomial

variable is (M2/Q2)Qρ(1 − ρ) = (M − 1)/Q. As each bin is
independent, if we look at any set of bins (such as a circular set of
bins), the variance of them is still the same. Thus (M − 1)/Q is
the expected anisotropy for a white noise sample set.

The above analysis applies to the unmodified p(d). To account for
the smoothing caused by applying the Gaussian kernel, we multiply
Q by a factor of 2.37 before using the above formula. Here is a brief
justification. Since we set the standard deviation σ of the Gaussian
kernel to be 1 cell wide, it will average primarily 3 adjacent bins:
the center bin x1 with a weight w, and the two neighbor bins x0

and x2 with weight (1−w)/2 each. Thus their average is w · x1 +
(1 − w)/2 · x0 + (1 − w)/2 · x2. Assume the variance of each
bin variable is v, then due to independence, the variance of their
average is (w2+2 [(1−w)/2]2) ·v. By plugging in the normalized

Gaussian weight w = 1
1+2e−1 we have the factor 2.37.

C Explanation for Equation 12

m ss’
r(s’) r(s)

Figure 8: Isotropic χ.

Here we provide an intuitive explanation on our formulation of
Equation 12. As shown in Figure 8, assuming we have two sam-
ples s and s′ for which we wish to compute χ(s, s′, s− s′). Let m
be the mid-way point that partitions s−s′ in proportion to r(s) and
r(s′). Then intuitively we should adjust the two segments m − s′

and s−m according to the ratios
E(r)
r(s′) and

E(r)
r(s)

, respectively:

χ(s, s′, s− s′) =
E (r)

r(s′)
(m− s′) +

E (r)

r(s)
(s−m)

=
E (r)

r(s′)
r(s′)

r(s) + r(s′)
(s− s′)+

E (r)

r(s)

r(s)

r(s) + r(s′)
(s− s′)

=
2E (r)

r(s) + r(s′)
(s− s′) (23)

D Explanation for Equation 15

Equation 15 is formulated by considering the fact that J provides
a “local warp” from the anisotropic to a uniform domain [Li et al.
2010]; and we ensure that Equation 15 will reduce to Equation 12
under isotropic settings.

E Anisotropic Importance Jacobian

According to [Li et al. 2010], the Jacobian J derived from an im-
portance image I may not be a square matrix. However, we need a
square J for Equation 15 to preserve the dimension of d. We over-
come this issue by a simple observation: since the dart throwing

algorithm in [Li et al. 2010] depends on only JTJ , not J itself, all



we need is to derive a square J ′ so that

JTJ = J ′TJ ′
(24)

This can be achieved by the standard matrix square root method:

JTJ = V TDV (25)

where V is an orthonormal matrix and D a diagonal matrix. Note

that since JTJ is positive definite, D will contain only non-
negative diagonal elements. Thus

J ′ = V T
√
DV (26)

F Quantifying Blue Noise

Blue noise refers to a general class of sample distributions that
exhibit the absence of low-frequency energy and the existence of
broadband high-frequency energy in the power spectrum. As doc-
umented in previous work [Cook 1986], these properties generally
lead to preferred visual effects in sampling. In [1987], Ulichney
provided a qualitative description of blue noise, but no quantitative
definition was given. To our knowledge there is no explicit quantita-
tive measurement for blue noise in existing work. Here we provide
such a definition using our method. Given the distribution p(d) of
a sample set, one simple way to quantify blue noise is to measure
its difference with an ideal blue noise profile b(d):

b(d) =

{
0 if |d| < rmin

1 else
(27)

where rmin is the desired minimum inter sample spacing. It can
be shown that the Fourier power spectrum of this ideal profile b
(by plugging b into Equation 5) satisfies the blue noise properties
with additional undulations similar to a Poisson disk sample set (see
the next section for more details). As discussed in Section 4, the
undulation is caused by the nature of the cos kernel instead of the
inherent properties of the sample distribution. We thus prefer a flat
profile for our definition of b as in Equation 27.

Given a p(d) and our definition of b(d) (both distributions are nor-
malized), we can measure their discrepancy as follows:

β(p, b) =
|Ωd|
2|Ωc|

∫
Ωc

|p(d)− b(d)|δd

+
|Ωd|

2|Ωd − Ωc|
∫
Ωd−Ωc

|p(d)− b(d)|δd (28)

where Ωc is the inner core of Ωd with radius rmin and |.| indicates

the volume of the domain. Intuitively, β sums up the absolute dif-
ferences between p and b, but we take care to normalize the terms
within and outside Ωc so that the result will not be impacted by the

relative size of Ωc and Ωd. Thus, β will be in the range [0 2], where
smaller values indicating closer resemblance to an ideal blue noise.

case β
CCVT 0.11
Poisson disk 0.12
Polymino 0.14
Lloyd relaxation 0.15
jittered grid 0.34
white noise 0.54
regular grid 0.90

Table 2: Quantifying blue noise.
Here, we measure β, the devia-
tion of p(d) from various distri-
butions in Figure 2 with respect
to an ideal blue noise distribution
b(d) with rmin = 0.03.

Table 2 measures β for a variety of distributions from Figure 2.

As shown, the measured β values reflect our intuitions about the
blueness of various distributions quite well. By using other formu-
lations of b(d), we can quantify blue noise with different criteria

(e.g. having a peak around rmin), or noise with other spectral col-
ors. Moreover, by obtaining an analytic representation of p(d) and
then applying Equation 5, it is possible to derive an analytic for-
mula for the Fourier power spectrum of standard sample sets such
as Poisson disk samples. This is because p(d) is often much easier
to derive (at least empirically) than the power spectrum itself, as it
does not contain the undulation caused by the cos kernel.

G Cosine Transform for b

Here we derive the cosine transform for our ideal blue noise profile
b in Equation 27. First, to simplify the derivation, we define the
complement function

b′(d) = 1− b(d) =

{
1 if |d| < rmin

0 else
(29)

Without loss of generality, let’s assign rmin = 1 in subsquent
derivations. Due to linearity, the cosine transform of b is sim-
ply a powered dirac delta function δ minus the cosine transform
of b′. This is because the cosine transform of constant 1 is δn in
n-dimensional space. Next, the cosine transform of b′ is defined as

P (b′) =
∫
Ω

cos(ω.d) b′(d) δd =

∫
b(0,1)

cos(ω.d)δd (30)

where b(0,1) is a unit n-dimensional ball centered at origin with
radius 1. Due to radial symmetry/isotropy, it suffices to compute
the result for any given frequency orientation. Without loss of
generality, we pick the frequency vector ω = ω (1, 0, 0, ...), in
other words, a vector that’s along the first axis in n-dimensional
space and has magnitude ω. Thus the integral we are computing
is

∫
b(0,1)

cos(ω · d1)δd. Essentially, this is integrating function

cos(ω · d1) inside the unit n-dimensional ball. We can expand this
multi-dimensional integral to a 1D integral as:∫ 1

−1

cos(ω · d1)V n−1(
√
1− d1 · d1)δd1 (31)

where V n−1(
√
1− d1 · d1) is the volume of an (n-1)-dimensional

ball with radius
√
1− d1 · d1. It is known that the volume of an

n-dimensional ball is:

V n(R) =
πn/2

Γ(n/2 + 1)
Rn

where Γ is the gamma function, and R is the radius of the ball. Thus
Equation 31 is further developed to:∫ 1

−1

cos(ω · d1) π(n−1)/2

Γ((n− 1)/2 + 1)

(√
1− d1 · d1

)(n−1)

δd1

Using the property of the Γ function, it turns out that this 1D inte-
gral has analytic solutions. After normalization, the solution is:{

2n/2 (n/2)! BesselJ(n/2,ω)

ωn/2 if n is even

0F1[
n
2
+ 1,−ω2

4
] if n is odd

(32)

where BesselJ is the Bessel function of the first kind, ! denotes the
factorial, and 0F1 is a confluent hypergeometric function. Consid-
ering the complement relationship of b and b′, and expand 0F1, we
can express the cosine transform of b for the first 4 dimensions as:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
1− sinω

ω
n=1

1− 2BesselJ(1,ω)
ω

n=2

1− 3(−ω cosω+sinω)

ω3 n=3

1− 8BesselJ(2,ω)

ω2 n=4

(33)



Figure 9 plots these four functions. Note that these curves directly
correspond to the radial mean of the Fourier power spectrum of our
ideal blue noise profile. Observe that they all exhibit the basic fea-
tures of blue noise (with undulation), indicated by the lack of low-
frequency energy and the existence of broadband high-frequency
energy.
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Figure 9: Cosine transform of b for the first 4 dimensions.

H Additional Measures

Here, we describe several additional measures on top of our core
formulation (Section 3) that might complement our methods but
have not been employed in our experimental results.

Measure similarity In addition to spatial proximity (Equation 8),
it will also be good to consider local measure similarity. Specifi-
cally, we can define the local measure for s as follows:

τ(s) =
|s− s′|
μ(s, s′)

(34)

where s′ is a nearby sample that is infinitely close to (but distinct
from) s. Specifically, τ = r for isotropic sampling and τ = J−1

for anisotropic sampling. From this, we factor the following local
measure similarity into Equation 9:

ν(d = s− s′) =
{
1 if |τ(s)− τ(s′)| ≤ ε×min(τ(s), τ(s′))
0 else

(35)

Theoretically, ν would allow us to adaptively adjust the local neigh-
borhood size for collecting d pairs depending on the local variations
of domain property manifested by τ , but throughout our experi-
mental results across a variety of adaptive, anisotropic, and surface
domains we have not found it to be necessary.

I Hidden Structure

Here, we provide experimental results for the potential pathological
cases of our range selection as discussed in Section 4. The worst
possible case for our method would be a maximum packing with
inter-sample spacing d just beyond ε rmin of our method. (In 2D,
the maximum packing corresponds to hexagonal lattices.) How-
ever, as shown in Figure 10, our method is no less discriminative
than Fourier spectrum analysis. A similar experiment using square
lattice is shown in Figure 11.
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Figure 10: Detecting hidden hexagonal lattice. Here, we first produce a hexagonal pattern with different inter-sample spacing d followed by Poisson disk
sampling with rmin = 0.03. We then apply Fourier spectrum analysis and our method over the sample sets similar to Figure 2.
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Figure 11: Detecting hidden square lattice. This is a similar experiment to Figure 10, except the use of square instead of hexagonal lattices.


