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Abstract

Point samples with different spectral noise properties (often defined
using color names such as white, blue, green, and red) are important
for many science and engineering disciplines including computer
graphics. While existing techniques can easily produce white and
blue noise samples, relatively little is known for generating other
noise patterns. In particular, no single algorithm is available to gen-
erate different noise patterns according to user-defined spectra.
In this paper, we describe an algorithm for generating point sam-
ples that match a user-defined Fourier spectrum function. Such a
spectrum function can be either obtained from a known sampling
method, or completely constructed by the user. Our key idea is to
convert the Fourier spectrum function into a differential distribu-
tion function that describes the samples’ local spatial statistics; we
then use a gradient descent solver to iteratively compute a sample
set that matches the target differential distribution function. Our al-
gorithm can be easily modified to achieve adaptive sampling, and
we provide a GPU-based implementation. Finally, we present a va-
riety of different sample patterns obtained using our algorithm, and
demonstrate suitable applications.

Keywords: point sampling, noise spectrum, adaptive sampling
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1 Introduction

Point samples with different spectral noise properties have a wide
range of applications across many disciplines. Such samples are
often described by color names based on their spectral shapes. For
example, blue noise is frequently used for anti-aliasing, texture
synthesis, stochastic ray tracing, stippling, and remeshing [Lloyd
1983; Dippé and Wold 1985; Cook 1986; Mitchell 1987; Turk
1992; Alliez et al. 2002; Dutre et al. 2002; Pharr and Humphreys
2004; Ostromoukhov et al. 2004; Kopf et al. 2006; Ostromoukhov
2007; Balzer et al. 2009; Wei 2010; Öztireli et al. 2010; Fat-
tal 2011; Schlömer et al. 2011]; green noise has been used for
halftoning [Lau et al. 2003]; white noise is the common standard
for random number generators [Tzeng and Wei 2008]; and pink or
red noise widely exists in nature, making it suitable for simulating
physical and biological distributions [Condit et al. 2000; Ostling
et al. 2000]. Additionally, in image processing, it is often important
to design samples with specific spectral properties in order to filter
certain frequency content in the image signal.
In these applications, we need to generate point samples that have
desired spectral noise properties. Most existing work has focused
on blue noise sampling, but cannot be used to produce samples with
other spectral colors such as green, red, or more complex hybrid
spectral colors. To our knowledge, no existing method provides
such capability, including handling a wide range of different noise
spectra, or even user-specified spectrum functions (see Figure 2).
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Figure 1: Given the sample count and a target Fourier spectrum (a SIG-
GRAPH logo in this example), our algorithm produces a set of point sam-
ples (upper right) that matches the target spectrum. The computation starts
from random initial samples, and iteratively updates points using a gradient
descent solver. More examples can be found in Figure 2.

In this paper, we describe an algorithm for computing point samples
that conform with general, user-specified Fourier spectrum func-
tions. Such a function can be either obtained from a known sam-
pling method, or constructed by the user. Our goal is to produce
a set of sample points whose Fourier spectrum matches the given
input. Our key idea is to first convert the Fourier spectrum function
into a differential distribution function [Wei and Wang 2011], which
describes the samples’ local spatial statistics and is equivalent to
the Fourier spectrum via a cosine transform. We then use a gradi-
ent descent solver to iteratively compute a sample set that matches
the target differential distribution function. Figure 1 shows an ex-
ample. The main advantages of using this function instead of the
Fourier spectrum function are: 1) it can easily handle spatial den-
sity changes and achieve adaptive sampling; 2) it does not require
computing the Fourier transform, thus is computationally more ef-
ficient; 3) it is easy to implement on the GPU to achieve parallel
computation.
We have studied this algorithm for both scientific curiosity and
practical applications. The paper is organized as follows: in Sec-
tion 3 we describe the problem formulation; in Section 4 we derive
the algorithm and explain implementation details; then in Section 5
we present results, outline the characteristics of novel sample pat-
terns, and demonstrate suitable applications such as green noise for
image stippling and red/pink noise for distributing scene elements.

2 Related Work

Color of noise. The spectral distribution property of noise pat-
terns is often described in terms of the Fourier spectrum color. For
example, white noise has a flat spectrum, with equal energy dis-
tributed in all frequency bands. Blue noise has weak low-frequency
energy, but strong high-frequency (i.e. blue) energy. In computer
graphics, the use of blue noise is universal in a variety of applica-
tions. This is mainly because it can reduce aliasing by replacing
low-frequency aliases with high-frequency noise that is more ac-
ceptable to human eyes [Yellott 1983; Dippé and Wold 1985; Cook
1986]. It also produces perceptually pleasing patterns that are cru-
cial for texture synthesis, image stippling, and remeshing.
Red/pink noise is the complement of blue noise in that its spec-
tral energy is concentrated in the low-frequency bands. It can be
used to characterize the distributions of plants [Condit et al. 2000;
Ostling et al. 2000] or galaxies [Martinez et al. 1995] which have



been observed to form concentrated clusters.
Green noise, as its name suggests, consists of primarily mid-range
frequencies. It characterizes the distributions of a variety of natu-
ral phenomena such as plumed seeds [Greene and Johnson 1989]
and fallen leaves [Schua et al. 2009]. Therefore it can be used to
simulate the distribution of these scene elements. In addition, green
noise has been applied in [Lau et al. 1999; Lau et al. 2003] for
half-toning, producing clustered-dot printing in a discrete setting.
Compared to blue noise, it can benefit printing devices that favor
clustered-dot rather than isolated-dot patterns.
During the study of green noise, Lau et al. [1999] introduced the
Binary Pattern Pair Correlation Construction Algorithm, for gener-
ating dithering patterns from an arbitrarily shaped pair correlation
function. While related to ours, their method does not guarantee
that the resulting samples will closely match the input pair corre-
lation function. In addition, every sample is sequentially generated
and used to modify a global sampling PDF, thus the method is non-
trivial to parallelize and achieve high performance.

Blue noise sampling. A variety of methods are available for
generating blue noise samples. These methods can be broadly clas-
sified into four categories: 1) Poisson disk sampling, dart throwing,
and variants [Dippé and Wold 1985; Cook 1986; Mitchell 1987;
Öztireli et al. 2010; Kalantari and Sen 2011; Ebeida et al. 2011;
Ebeida et al. 2012]; 2) optimization and relaxation-based meth-
ods [Lloyd 1983; Turk 1992; Balzer et al. 2009; Fattal 2011]; 3)
tiling-based methods [Ostromoukhov et al. 2004; Kopf et al. 2006;
Lagae and Dutré 2006]; and 4) half-toning including error diffu-
sion [Ulichney 1987; Ostromoukhov 2001; Zhou and Fang 2003;
Pang et al. 2008; Chang et al. 2009]. Our method is optimization-
based, but in contrast to previous work, our goal is to compute a
sample set that matches any given spectrum function. Therefore,
our algorithm can be used to simulate existing blue noise techniques
(see Figures 2(e), 4, 5), as well as produce novel noise patterns.
Parker et al. [1991] proposed an algorithm for manipulating the
power spectra of blue noise halftone patterns. A blue noise spec-
trum defined by a step function is used as input to influence the
sample distributions. It is unclear how this method can be modi-
fied to work with other noise spectra, or if the output can faithfully
match the input spectrum.

Sample analysis. A variety of standard methods are available
to measure the quality and distribution property of samples. In
terms of spatial analysis [Dale et al. 2002], one can calculate the
samples’ discrepancy [Shirley 1991] and relative radius [Lagae and
Dutré 2008]. These provide scalar measures to indicate the global
uniformity and density of samples. In terms of spectrum analy-
sis, it is common to compute the samples’ Fourier power spec-
trum [Ulichney 1987; Lagae and Dutré 2008], whose radial means
and anisotropy graphs are then used to quantify and detect artifacts
in uniformly distributed samples.
Recently, Wei and Wang [2011] proposed a new method for analyz-
ing non-uniformly distributed samples. Their key idea is to refor-
mulate the Fourier spectrum into a new form called the differential
distribution function. This function characterizes the samples’ lo-
cal spatial statistics, and can infer their spectral properties without
requiring a Fourier transform. Due to its local nature, the differ-
ential distribution function can account for spatial distance metric
changes, hence enabling non-uniform sample analysis. Our method
builds upon their technique. Specifically, our goal is to compute a
sample set that matches a target differential distribution function.

3 Overview

Fourier spectrum analysis. Given a set ofN samples {sk} (k ∈
[0, N − 1]) in an n dimensional space, the Fourier transform of the

sample set is defined as

F (f) =

N−1∑

k=0

e−2πi(f ·sk), (1)

where f is the frequency vector (in 2D, f = [fx, fy] represents the
scalar frequencies in the x and y directions respectively); · denotes
the vector inner product. For the purpose of analyzing sample pat-
terns, we are mainly interested in the power spectrum P (f) [Ulich-
ney 1987; Bracewell 1999; Lagae and Dutré 2008], which measures
the squared magnitude of F (f) and is defined by

P (f) = |F (f)|2

=
1

N

(
N−1∑

k=0

cos(2πf · sk)

)2

+
1

N

(
N−1∑

k=0

sin(2πf · sk)

)2

(2)

The average and relative variance of P (f) in each frequency band
(consisting of frequency vectors at the same magnitude but differ-
ent orientations) provide the radial means and anisotropy measures.
These measures are typically plotted into 1D graphs, and are used
to analyze the samples’ spectral distribution properties, including
spatial artifacts and angular biases.

Differential domain analysis. Wei and Wang [2011] observed
that the Fourier spectrum in Eq. 2 can be re-written into another
form that only depends on the sample location differences. This
can be derived by expanding the quadratic terms in Eq. 2, applying
basic trigonometry rules, and observing that the expectation of a
function (i.e. cos) of a random variable (i.e. (si − sj)) is equal to
the integral of the function with the probability distribution of the
random variable. Specifically, with sufficiently large N , we have

P (f) =
1

N

N−1∑

i=0

N−1∑

j=0

cos[2πf · (si − sj)]

≈
∫

Ωd

cos(2πf · d) p(d) δd. (3)

Here p(d) is called the differential distribution function. It de-
scribes the probability distribution of the difference (si − sj) be-
tween every pair of samples i and j. It can be evaluated as

p(d) =
1

N

N−1∑

i=0

N−1∑

j=0

κ(d, (si − sj))

= κ(d,0) +
1

N

N−1∑

i=0

N−1∑

j=0
j 6=i

κ(d, (si − sj)), (4)

where κ is a density estimation kernel. It can be a Dirac delta func-
tion, but for robust estimation it is generally a Gaussian kernel,

κ(d,d0) = e
− ‖d−d0‖2

σ2 , (5)

where d0 is the center and σ is the standard deviation. Note that
p(d) sums over all pairs of samples and κ is rotationally symmetric,
thus p(d) is an even function: p(−d) = p(d).
Eq. 3 tells us that p(d) relates to the Fourier spectrum P (f) via
a cosine transform. Note that this can be viewed as the Fourier
transform of an even function p(d). The same relationship can also
be derived by computing the discrete autocorrelation and applying
the Wiener-Khinchin theorem, or alternatively by directly using the
Wigner transform [Schroeder 1999]. The main difference is that
the autocorrelation and the Wigner transform are typically defined
in 1D for time domain signals, while we are interested in 2D spatial
domain samples.



As shown in [Wei and Wang 2011], it suffices to examine p(d) over
a short range of d values. In other words, the differential distribu-
tion function p(d) (and consequently the Fourier spectrum P (f))
is largely determined by each sample’s local neighbors. Samples
beyond a certain distance from each other contribute little to p(d)
or the Fourier spectrum. This property makes it possible to use
a locally defined distance metric to account for spatial or angular
changes in the sampling density. As a result, p(d) can be used to
analyze samples that are non-uniformly distributed, including adap-
tive and anisotropic samples, as well as samples computed with
geodesic distance metric defined on a mesh surface.

Problem Formulation. Our goal in this paper is to design an al-
gorithm that can compute samples according to a user-specified
Fourier spectrum. This is motivated by the fact that while many
techniques are available to generate specific sample patterns, such
as Poisson disk samples or CCVT [Balzer et al. 2009], no single
algorithm can produce a broad range of different sample patterns.
Mathematically, given a target spectrum Φ(f) and a desired number
of samples N , we formulate the problem as finding the positions of
samples {sk} such that their Fourier spectrum P (f) matches Φ(f)
as closely as possible, by minimizing the following error function:

EP =

∫
[P (f)− Φ(f)]2 δf .

However, defining the error function this way makes it difficult to
solve the problem, or use the same method for adaptive sampling or
other non-uniform domains, since the Fourier spectrum is not well
defined in such domains [Wei and Wang 2011]. Instead, since P (f)
and p(d) are related by a Fourier transform, which preserves the L2
norm, we can re-define the error function as

Ep =

∫
[p(d)− φ(d)]2 δd, (6)

where φ(d) is the target differential distribution function corre-
sponding to Φ(f). It is defined as the inverse Fourier (cosine) trans-
form of Φ(f). The main advantage of this formulation is that since
p(d) is a local quantity, it allows us to use the same method for
non-uniform sampling. It also avoids computing the Fourier trans-
form, thus is computationally more efficient. In addition, p(d) is
easy to parallelize and straightforward to implement on the GPU.

4 Algorithms and Implementation

In this section, we discuss the algorithms and implementation de-
tails for solving Eq. 6. Our main inputs are a target spectrum func-
tion and the desired number of samples N . The target function can
be given in the form of a differential distribution φ(d) directly, or a
Fourier spectrum Φ(f) (in which case it will be converted to the cor-
responding φ(d) as described in Section 4.2 below). We start with
uniform sampling, then extend the method to adaptive sampling.

4.1 Gradient Descent Solver

We use a gradient descent method to iteratively minimize Eq. 6. We
start with a set of uniform random (i.e. white noise) points. At each
iteration we move every point sk locally towards the direction that
reduces Ep the fastest. Such a direction is given by the negative
gradient of Ep with respect to sk. After a sufficient number of
iterations, the sample points will converge and we output the final
result. Details are described below.
To begin, the gradient of Ep with respect to sk is calculated by

∂Ep
∂sk

=
∂
∫

[p(d)− φ(d)]2 δd

∂sk
= 2

∫
[p(d)− φ(d)]

∂p(d)

∂sk
δd.

Recall that p(d) denotes the samples’ current differential distribu-
tion function, and φ(d) denotes the target distribution function. In-

tuitively ∂p(d)
∂sk

measures the change in p(d) due to a small change
in sample sk. By the definition of p(d) in Eq. 4, we have

∂p(d)

∂sk
=
∂
(∑N−1

j 6=k κ(d, (sk − sj)) +
∑N−1
i 6=k κ(d, (si − sk))

)

N ∂sk

=
1

N

N−1∑

j 6=k
κ′(d, (sk − sj))− 1

N

N−1∑

i 6=k
κ′(d, (si − sk)).

Combining the above two equations, we have

∂Ep
∂sk

=
2

N

N−1∑

j 6=k

∫
[p(d)− φ(d)]κ′(d, (sk − sj))δd

− 2

N

N−1∑

i 6=k

∫
[p(d)− φ(d)]κ′(d, (si − sk))δd. (7)

Here κ′(d,d0) = ∂κ(d,d0)
∂d0

represents the first-order derivative of
the Gaussian kernel with respect to d0. It’s defined as

κ′(d,d0) = − 2

σ2
(d0 − d) e

− ‖d0−d‖2
σ2 . (8)

Note that it is a vector quantity independent of the samples.
Since the integrals in Eq. 7 are over the entire domain of d, and
p(d), φ(d) are both even functions while κ′ is an odd function (i.e.
κ′(d,d0) = −κ′(−d,−d0)), it is easy to prove that the upper and
lower terms of Eq. 7 are actually equal. Therefore, we have

∂Ep
∂sk

=
4

N

N−1∑

i6=k

∫
[p(d)− φ(d)]κ′(d, (sk − si))δd.

Note that each term in the sum is an integral of [p(d)− φ(d)] with
the function κ′(d) centered at (si−sk). Therefore we can compute
it more efficiently by first convolving [p(d) − φ(d)] with κ′(d),
then index the result using (si − sk). In other words,

∂Ep
∂sk

=
4

N

N−1∑

i6=k

[
(p(d)− φ(d)) ∗ κ′(d)

]
(sk − si), (9)

where ∗ denotes a convolution. Finally, at each iteration t, we up-
date every sample sk by moving it in the opposite direction of ∂Ep

∂sk
by a small step size ∆t:

st+1
k = stk −∆t

∂Ep
∂sk

. (10)

In sum, the gradient descent solver involves the following steps:
first, calculate the current differential distribution function p(d);
then compute [p(d)− φ(d)] and convolve it with κ′(d) defined in
Eq. 8; next, for each sample sk, loop over all nearby samples si and
compute ∂Ep

∂sk
(Eq. 9); and finally, update sk according to Eq. 10.

Parameter Selection. There are two main parameters we need to
consider here. The first is the Gaussian kernel’s standard deviation
σ (Eq. 5), which indicates the kernel’s support size relative to a
pixel size in the 2D histogram used to represent φ(d). Setting it too
small will cause the evaluation of ∂Ep

∂sk
to be very noisy, and setting

it too large will reduce the accuracy of matching p(d) to φ(d). By
default we use 128× 128 histogram resolution and set σ = 2.
The second parameter is the step size ∆t in Eq. 10. Setting ∆t
too large will cause the computation to be unstable, and setting it
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Samples Fourier spectrum P (f) R.M. and anisotropy DDA spectrum p(d) R.M. and anisotropy

Figure 2: Seven sets of samples generated using our algorithm with different Fourier spectrum profiles. Each set contains 4,000 points. We show the Fourier
analysis (averaged over 10 runs) and differential domain analysis [Wei and Wang 2011] results, both including radial means and anisotropy graphs. Among
them (e) is generated using the spectrum profile of the CCVT algorithm [Balzer et al. 2009]; the others are all generated with user-plotted spectrum profiles.
Note that the anisotropy, which measure the variance relative to radial means, is generally high where the radial means are close to zero.



(a) c = 0.1 (b) c = 0.3 (c) c = 0.6 (d) Simulating [Haase et al. 1996]
Figure 3: Grass scenes generated from pink noise samples. The input Fourier spectrum in (a-c) is modeled as a Gaussian centered at 0 with various c
(standard deviation) values; (d) is generated using a differential distribution function measured from real tree distributions [Haase et al. 1996]. The radial
means of the Fourier spectrum is shown on the upper-left corner of each image.

too small will increase the computation time. Generally, we would
like to bound ∆t ‖ ∂Ep

∂sk
‖, so that after one iteration the movement

of any point will be bounded relative to the mean distance between
samples. Our approach is to first calculate ‖ ∂Ep

∂sk
‖ for every sample,

then find the maximum value ‖ ∂Ep
∂sk
‖max, and finally set

∆t =
cd
n
√
N

1

‖ ∂Ep
∂sk
‖max

, (11)

where cd = 0.1 is a constant scaling factor. The reason n
√
N ap-

pears in the denominator is that ∆t should be calculated relative to
the mean distance between samples, which itself is inversely pro-
portional to n

√
N in an n-dimensional space. In practice, we also set

a upper limit on ∆t to avoid it being too large, which may happen
when ‖ ∂Ep

∂sk
‖max is close to zero as the computation converges.

Convergence. To decide when to terminate the computation, we
check the value of the error function defined in Eq. 6. The error
value generally decreases if the computation has not converged yet.
For robust checking, we calculate the average error over each pass
of 200 iterations. If the average error value is at least 2% better
than the previous pass, we continue; otherwise we treat the results
as converged and terminate the computation.
For blue noise samples such as Poisson disk and CCVT, their φ(d)
functions contain regions of zeros. This generally takes more itera-
tions to converge because we need to ensure that the resulting p(d)
exactly matches φ(d) in the regions of zeros. While we could add
a penalty term to Eq. 6 to enforce the constraint, we use a simpler
method that increases the 200 iterations per pass to 1000. This has
worked well in practice.

Discussion. Our algorithm relates to the kernel density model by
Fattal [2011]. From the algorithm point of view, both update points
by moving them primarily towards the negative gradient direction
of an error function. Fattal’s method is formulated as MCMC sam-
pling of a sample distribution that is defined using a spatial error
function and a temperature parameter. It is inspired by statistical
mechanics and is designed to compute blue-noise samples only. In
contrast, our method directly minimizes an error function defined
in the differential domain. Our goal is to match a target differen-
tial distribution function, so that we can compute samples with an
arbitrary spectrum profile. As discussed in Section 4.3, we solve
adaptive sampling by exploiting the invariance of the differential
distribution function.

4.2 Computing and Normalizing φ(d)

The target φ(d) may be provided by the user in several ways. The
first is to use φ(d) obtained from a known sampling algorithm (see
Figures 2(e), 4, 5 for examples). This allows us to simulate existing
algorithms. The second way is for the user to plot φ(d) directly
(such as Figures 2(g), 9). Since φ(d) is represented as a two or

higher dimensional histogram, it’s more convenient for the user to
plot the radial means of φ(d) as a 1D curve, then produce a rota-
tionally symmetric φ(d) from the 1D curve. Finally, the user can
also provide the target Fourier spectrum Φ(f) instead of φ(d), and
our algorithm will automatically convert Φ(f) to φ(d). Most exam-
ples in the paper are generated this way. We find that this is usually
more intuitive, since the Fourier spectrum graph corresponds more
closely to our notion of the ‘color’ of noise.

Properties of φ(d). We assume that samples beyond a certain
distance from each other are uncorrelated, which is true for the typ-
ical sample sets we are interested in. Thus φ(d) is usually flat (like
in white noise) for sufficiently large d. To calculate the distribution,
we only need to account for each sample’s local neighbors, defined
by a neighborhood size ∆p. Therefore when providing φ(d) we
always include a flat portion at the end to make sure that the inter-
esting features of it are sufficiently covered within ∆p.
The value ∆p is set by the user. It indicates the physical size of
φ(d) in the sample domain. For example, for Poisson disk sam-
ples ∆p is around 6 ∼ 7 times the Poisson minimum distance
(see [Wei and Wang 2011]). Setting ∆p too large increases the
computation cost and also loses locality (which makes it difficult to
perform adaptive sampling as described later). Setting it too small
reduces the accuracy of the calculated p(d). The typical value of
∆p is between 0.05 ∼ 0.2 with respect to a unit square domain.

Properties of Φ(f). We also assume Φ(f) is flat for sufficiently
large f . In fact, Φ(f) as defined by Eq. 2 typically converges to 1,
and has a value of N at the origin (i.e. Φ(0) = N ).

Converting Φ(f) to φ(d). From Eq. 3 we know that the target
Fourier spectrum Φ(f) is a cosine transform of φ(d). Therefore it
follows that φ(d) is an inverse cosine transform of Φ(f), which is
a cosine transform itself. In other words:

φ(d) =

∫

Ωf

cos(2πd · f) Φ(f) δf . (12)

This can be proved by observing that Φ(f) and φ(d) are actually
related to each other via Fourier and inverse Fourier transforms. But
since they are both even functions (Φ(f) = Φ(−f) and φ(d) =
φ(−d)), the imaginary (sine) portions of the Fourier and inverse
transforms are zeroed out, so both are reduced to cosine transforms.

Normalization of φ(d). Eq. 12 works if we account for all sam-
ple pairs in the domain, regardless of their distances. However, as
we only consider each sample’s local neighbors, additional steps
must be performed to normalize φ(d) and make it consistent with
the p(d) actually evaluated in the solver. Below are the details.
First, to evaluate Eq. 12, we replace Φ(f) by Φ(f) − 1. This is
because the integration range of f is theoretically infinite, but in
practice we must perform numerical integration within the finite
range where Φ(f) is provided. By subtracting 1 from Φ(f), the



Sa
m

pl
es

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300
-20

-15

-10

-5

0

5

10

15

20

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300
-20

-15

-10

-5

0

5

10

15

20

0 50 100 150 200 250 300

(a) Dart throwing (b) Our result

Figure 4: Comparison of uniform blue noise sampling. (a) shows stan-
dard Poisson disk samples generated using dart throwing; (b) shows our
result generated using the spectrum profile obtained from (a). The Fourier
analysis (including radial means and anisotropy) is shown on the bottom.
Note that the radial means of (b) closely resembles that of (a).

resulting function flats out to 0 for sufficiently large f , hence the
integration can be accurately evaluated.
Next, assume the actually calculated p(d) according to Eq. 4 is
represented as a histogram with M bins. Then the sum of p(d)
over all bins is simply the average number of points around each
sample’s neighborhood ∆p, which is ∆2

pN if we assume samples
are evenly distributed in the domain. To match φ(d) to p(d), we
must make sure the sum of φ(d) over all histogram bins is equal to
∆2
pN . Thus the normalization factor for φ(d) is

sφ =
∆2
pN∑

d φ(d)
. (13)

Discussion. Note that given an arbitrary Φ(f), the resulting φ(d)
may have some negative values, since the cosine transform is not
guaranteed to produce positive-only results. These negative values
indicate that the provided Φ(f) is generally not realizable (unless
if the points are specially designed or generated in a non-stationary
manner). If this happens, our algorithm will shift φ(d) by a con-
stant and re-normalize it, so that the resulting function has no neg-
ative values. Alternatively, the user can eliminate the negative por-
tion manually. Note that a constant shift in φ(d) only changes the
value at Φ(0), but preserves the overall shape of the input Φ(f).

4.3 Adaptive Sampling

In adaptive sampling, the sample density changes spatially accord-
ing to a distance field r(s). This can be viewed as local changes to
the distance metric. Our algorithm can be easily modified to achieve
adaptive sampling by exploiting the invariance of p(d). Specif-
ically, as p(d) is a local quantity, it can be unwarped locally to
account for changes in the distance metric, as shown in [Wei and
Wang 2011]. For any given noise spectrum, the unwarped p(d)
should be statistically the same everywhere in the domain, as long
as the neighborhood size ∆p is small relative to the changes in r(s).
Given a grayscale image with spatial intensity value I(s), we define
r(s) = 1√

I(s)
so that the sample density is proportional to I(s). We

first normalize r(s) so that the average value of 1
r2(s)

(i.e. overall
image intensity) is 1.0. We then follow [Wei and Wang 2011] to
define the unwarped differential d̃ between samples si and sj as

d̃(si, sj) =
2(si − sj)

r(si) + r(sj)
. (14)

In other words, it divides (si − sj) by the average distance field
value between them. If r(s) is uniform, d̃(si, sj) will be equal
to (si − sj). Following this, we modify the calculations of p(d),

(a) CCVT result (b) Our result using CCVT profile

Figure 5: Comparison of blue noise stippling. (a) shows the result us-
ing the CCVT algorithm [Balzer et al. 2009]; (b) shows our result using
CCVT spectrum profile. Both are computed with 20,000 points. This exam-
ple demonstrates the capability of our algorithm to simulate existing algo-
rithms by using their spectrum profiles as input.

∂Ep
∂sk

, and ∆t in Equations 4, 9, and 11 by replacing (si − sj) with

d̃(si, sj). Note that the target φ(d) remains unchanged.
To calculate p(d), Eq. 4 now becomes

p(d) = κ(d,0) +
1

N

N−1∑

i=0

N−1∑

j=0
j 6=i

κ(d, d̃(si, sj)). (15)

To calculate ∂Ep
∂sk

, Eq. 9 now becomes:

∂Ep
∂sk

=
4

N

N−1∑

i 6=k
J ×

[
(p(d)− φ(d)) ∗ κ′(d)

]
(d̃(si, sk)), (16)

where J is the 2×2 Jacobian matrix that comes from differentiating
κ(d, d̃(sk, sj)) and κ(d, d̃(si, sk)) against sk. It is defined by

J =
1

r(si) + r(sk)

[
rx(si) d̃(si, sk).x+ 2 rx(si) d̃(si, sk).y

ry(si) d̃(si, sk).x ry(si) d̃(si, sk).y + 2

]
,

where rx and ry denote the partial derivatives of the distance field
r(s) in the x and y directions respectively; d̃.x and d̃.y denote the
x and y components of d̃. Finally, we scale the step size ∆t in
Eq. 11 by r(sk) to make sure it is proportional to the local density.

4.4 Implementation Details

Our algorithm is implemented on the GPU using NVIDIA’s CUDA
programming language and Thrust library. During each iteration,
every sample point can be updated simultaneously, thus we achieve
a considerable speedup by exploiting the GPU. To begin, the user
will provide the target Φ(f), set the desired number of samplesN as
well as the neighborhood size ∆p. Our algorithm will compute and
normalize the target φ(d) as described in Section 4.2. For adaptive
sampling, given an input grayscale image, we use the reciprocal of
the square root of each pixel’s intensity value to define the distance
field r(s). This along with its derivative images rx, ry are stored in
GPU’s texture memory for fast access with bilinear interpolation.

Sample initialization. The initial samples are computed on the
CPU as white noise, and their density is proportional to the distance
field. We then upload them to the GPU as a CUDA array.

Computing p(d). To estimate the differential distribution p(d)
of the current sample set, we first compute a 2D histogram h(d) of
the sample differences (si− sj) without the Gaussian kernel. To do
so, we create a 128× 128 CUDA array in global memory to repre-
sent h(d), then launch N threads corresponding to the number of



(a) Input image (b) Blue noise (CCVT profile)

(c) Green noise (d) Green noise [Lau et al. 2003]

Figure 6: Comparing green noise and blue noise stippling results. Both
(b) and (c) are generated using our algorithm. Compared to blue noise,
green noise produces clustered dot effects that can be essential for practical
or aesthetic reasons. (d) shows result from a previous green noise halftoning
method, which applies in discrete (pixel) domain only.

samples. Each thread k finds sample k’s spatial neighbors (i.e. all
samples si such that d̃(si, sk) ≤ ∆p), and atomically increments
the histogram value stored at h(d̃(si, sk)). An uniform grid data
structure is used to accelerate the search for neighbor samples. The
resulting h(d) is then divided byN and convolved with a Gaussian
kernel of σ = 2 to produce p(d).

Sample update. Next, we compute each sample’s gradient de-
fined by Eq. 16. We first compute [p(d) − φ(d)] and convolve it
with κ′(d) (Eq. 8). The result is stored in GPU texture memory.
Then we launch N threads again: using the uniform grid struc-
ture, each thread k finds sample k’s spatial neighbors si, calculates
d̃(si, sk) to index into the convolved texture, and sums up the result
according to Eq. 16. This produces ∂Ep

∂sk
. Finally, we update each

sample’s position according to Eq. 10.

5 Results and Applications

Figure 2 shows a number of samples sets computed using our al-
gorithm with different noise spectra. These include pink noise,
green noise, blue noise, magenta noise (whose Fourier spectrum
is the complement of green noise), and a SIGGRAPH noise (whose
Fourier spectrum is shaped like the SIGGRAPH logo). For each set
we show the Fourier spectrum analysis, including radial means and
anisotropy, as well as the differential domain analysis. For most
of them, the target Fourier spectrum is plotted by the user with 1D
curves. One exception is (e), where the spectrum profile of the
CCVT algorithm [Balzer et al. 2009] is used as input.

Initial Sample Patterns. While we typically initialize samples as
white noise, it is important to examine the behavior of our algorithm
under different initial sample patterns. In Figure 7 we shows the re-
sults under three initial sample patterns (white noise, regular grid,
and a cluster where samples are randomly distributed in the center
0.02× 0.02 square) and for three different types of noise. For each
example we show the final result as well as two intermediate results
before convergence. Note that in most cases the result is insensi-
tive to the initial sample pattern. However, in the cluster case, the
pink and green noise results fail to cover the entire domain. This is

White noise Regular grid Cluster (0.022)
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Figure 7: Initial sample patterns. We demonstrate the behavior of our
algorithm under different initial sample patterns (shown on the top) and
for different types of noise. For each example we show the final result and
two intermediate results before convergence. In most cases the algorithm is
insensitive to initial samples, except in the cluster case where the green and
pink noise results did not fully cover the entire domain.



mainly because our algorithm currently does not enforce the sam-
ple distribution to be stationary or spatially uniform. This can cause
the solver to terminate even when the spatial density is not uniform
yet across the entire domain. We have found that increasing the
neighborhood size ∆p or total sample count N can help improve
the results in such cases.

Performance. Table 1 lists the performance of our GPU imple-
mentation for five types of noise selected from Figure 2. The tim-
ings are reported on a PC with 3.0 GHz quad-core CPU and an
NVIDIA GTX 480 graphics card. The primary bottleneck is in the
computation of p(d), which requires an atomic operation on the
GPU for estimating h(d). Pink noise is the slowest to compute,
mainly because the samples in pink noise tend to form concentrated
clusters, increasing the average number of neighbors per sample
hence increasing the computation time.
In Figure 8 we show the decay of error values during the computa-
tion. The plotted values are the relative error (i.e. Eq. 6 divided by
the integral of φ(d) for normalization purpose) averaged over ev-
ery 200 iterations. In most cases the error decreases rapidly. Note
that green noise error curve in the right figure has a slight increase
beyond 2,000 iterations. This happens because the per-iteration er-
ror in this example oscillates within a wider range [0.15%-0.3%]
in the beginning and smaller range [0.2%-0.25%] towards the end,
causing the average error to increase slightly past 2000 iterations.

Red/pink noise. A variety of natural plant distributions ex-
hibit a clustering behavior that can be characterized by red/pink
noise [Greene and Johnson 1989; Schua et al. 2009]. Our method
can be used to produce such distributions, as shown in Figure 3.
We place a grass object centered at each sample to generate a grass
scene. The input Fourier spectrum is modeled as a Gaussian cen-
tered at 0 with standard deviation c. Smaller c produces more con-
centrated clusters, while larger c produces more scattered clusters,
as evident from the results. In (d) we have applied a differential
distribution function measured from real tree distributions [Haase
et al. 1996]. By using a measured function from real scenes, our
algorithm can create a synthetic scene with similar distributions.

Blue noise. Our method can also generate blue noise. In Fig-
ure 2(e) we applied the CCVT spectrum profile as input to our algo-
rithm to generate uniform samples; similarly in Figure 4 we applied
the Poisson disk spectrum profile as input for uniform sampling.
Both result in high-quality blue noise samples and demonstrate the
ability of our algorithm to faithfully simulate existing algorithms.
In Figure 5 we show an example of adaptive sampling using the
CCVT profile for stippling. Compared to the original CCVT algo-
rithm, our method produces results with comparable quality.
In Figure 2(f) we applied a synthetic blue noise spectrum, which is
a step function that changes sharply from 0 to 1 at a given cutoff
frequency. Note that unlike Poisson disk or CCVT, the correspond-
ing φ(d) of this synthetic blue noise does not contain a region of
zeros (no minimum distance constraint). Thus there is a non-zero
probability for samples to be arbitrarily close. This effect is also
evident in the manipulated blue noise examples found in [Parker
et al. 1991]. Note that the minimum distance constraint is a special
property by Poisson disk or similar algorithms, but is not inherent
in the definition of blue noise. If this property is desired, we can
manually modify φ(d) to include a region of zeros in the center.

Green noise. Green noise has been shown [Lau et al. 2003] to
benefit clustered-dot printing, with the goal of balancing spatial uni-
formity and separation with device limitations. For example, some
devices lack the support for printing dispersed dots as required by
blue noise. However, prior green noise methods are applicable only
to a discrete (pixel) domain. Our method does not have such re-
striction and can generate samples in a continuous domain.
In Figure 6, we apply green noise for image stippling, a popular ap-

Time / 100 ite Blue 1 Blue 2 Green Magenta 2 Pink
1,000 points 0.29s 0.31s 0.25s 0.24s 0.25s
5,000 points 0.53s 0.45s 0.73s 0.72s 0.75s

Total time Blue 1 Blue 2 Green Magenta 2 Pink
1,000 points 12.0s 14.1s 2.3s 3.1s 9.3s
5,000 points 22.6s 14.5s 6.4s 4.7s 36.3s

Table 1: Performance of our GPU algorithm. The top three rows show the
computation time per 100 iterations for generating 1000 and 5000 points
respectively. The bottom three rows show the total time upon convergence.

Figure 8: Error decay curves for different types of noise. These plots show
the decay of relative error values (in log scale) with respect to the number
of iterations when generating 1,000 points (left) and 5,000 points (right).

plication for blue noise sampling techniques [Secord 2002; Balzer
et al. 2009; Wei 2010; Fattal 2011; Li and Mould 2011]. Com-
pared to blue noise, which produces isolated dots, green noise tends
to produce clustered dots, and the centers of the clusters are dis-
tributed with uniform separation, similar to blue noise. This type
of stippling provides different flavors from blue noise, and can be
important for practical and aesthetic reasons.
To create green noise spectrum, we models its 1D radial means as
a Gaussian centered at µ (location of the middle frequency) with
standard deviation c (bandwidth). Through experiments we have
found that µ generally affects the spatial cluster size: higher µ pro-
duces smaller clusters , while c generally affects the variation in the
cluster sizes. See Figure 11 for detailed experimental results. This
relationship between spectral and spatial characteristics allows us
to select suitable parameters for specific target applications.

Anisotropic noise. Our algorithm can also work with
anisotropic (i.e. radially asymmetric) spectrum profiles. As shown
in [Lagae et al. 2009; Li et al. 2010], noise with anisotropic
spectrum is important for a variety of applications in sampling and
filtering. Prior anisotropic noise methods have been restricted to
specific spectrum types, such as blue noise in [Li et al. 2010] and
Gabor noise in [Lagae et al. 2009; Lagae and Drettakis 2011]. In
contrast, our algorithm can produce anisotropic noise with different
spectral properties. For example, in Figure 9, we have applied
deformed red, green, and blue noise profiles to produce samples
with desired spectrum shapes. Note that the deformed spectrum
must still satisfy that Φ(−f) = Φ(f), an intrinsic property of Φ(f).

Other examples. Figure 10 shows two additional examples
where green noise and magenta noise are used to synthesize tex-
tures by placing texture elements centered at every sample point.

6 Limitations and Future Work

As our main contribution, we have described a general algorithm
for producing point samples that match a given Fourier power spec-
trum, including ones that are constructed by the user. Due to the
ambiguity of the Fourier power spectrum, there exist many solu-
tions for each given spectrum. Our solver provides one possible
solution by iteratively minimizing an error function. But we do not
claim it is the best. In the future we plan to incorporate additional
measures, such as stationary property, into the objective function in
order to provide more control over the solution.
Our current anisotropic results (Section 5) are produced by directly
deforming the spectrum shapes. A potential future direction is to
impose such anisotropy from the application domain directly, such



Red noise Green noise Blue noise
Figure 9: Examples of anisotropic noise. The spectrum is shown on the
upper-left corner of each image. Note the visual differences in the sample
distributions corresponding to the spectrum differences.

(a) Green noise (b) Magenta noise

Figure 10: Synthesized textures using green and magenta noise. A leaf
texture is placed at each sample point and randomly rotated. The differential
distribution function of each sample set is shown on the upper-left corner.

as surface mapping or anisotropic stippling as demonstrated in [Li
et al. 2010]. This will require extending our current solver, which
handles up to isotropic adaptive sampling, for general anisotropic
sampling controlled by local Jacobians [Li et al. 2010].
Finally, we would like to seek further applications of noise patterns
with arbitrary spectral properties. Many results produced by our
method are never seen before, thus they may not have immediate
applications. Nonetheless, we believe they can inspire future work
and their importance will become more evident in the near future.
For example, in coded aperture imaging, we may define an ideal
frequency response of the aperture, and use our method to com-
pute the corresponding coded aperture patterns. Similarly, in image
processing, we may use our algorithm to compute optimal image
sampling patterns. We hope that the availability of our method will
enable researchers to explore such potential applications.
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SCHLÖMER, T., HECK, D., AND DEUSSEN, O. 2011. Farthest-
point optimized point sets with maximized minimum distance.

In HPG ’11, 135–142.
SCHROEDER, M. R. 1999. Computer Speech: Recognition, Com-

pression, Synthesis. Springer.
SCHUA, K., FEGER, K.-H., WAGNER, S., EISENHAUER, D.-R.,

AND RABEN, G. 2009. Cause-Effect Relations with Regard to
Functional and Morphological Humus Characteristics in Mixed
Forest Stands. EGU General Assembly 2009 11 (Apr.), 226.

SECORD, A. 2002. Weighted Voronoi stippling. In NPAR ’02,
37–43.

SHIRLEY, P. 1991. Discrepancy as a quality measure for sample
distributions. In Eurographics ’91, 183–194.

TURK, G. 1992. Re-tiling polygonal surfaces. In SIGGRAPH ’92,
55–64.

TZENG, S., AND WEI, L.-Y. 2008. Parallel white noise generation
on a GPU via cryptographic hash. In I3D ’08: Proceedings of the
2008 symposium on Interactive 3D graphics and games, 79–87.

ULICHNEY, R. 1987. Digital Halftoning. MIT Press, Cambridge,
MA.

WEI, L.-Y., AND WANG, R. 2011. Differential domain analysis
for non-uniform sampling. In SIGGRAPH ’11, 50:1–10.

WEI, L.-Y. 2010. Multi-class blue noise sampling. In SIGGRAPH
’10, 79:1–8.

YELLOTT, J. I. J. 1983. Spectral consequences of photoreceptor
sampling in the rhesus retina. Science 221, 382–385.

ZHOU, B., AND FANG, X. 2003. Improving mid-tone quality of
variable-coefficient error diffusion using threshold modulation.
In SIGGRAPH ’03, 437–444.


