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Figure 1: Our algorithm achieves interactive hair rendering and appearance editing under environment lighting, including both single and
multiple scattering effects. In this example, the user directly paints onto the hair to edit the spatially-varying scattering parameters. This
results in a dynamic simulation of hair coloring. From left to right, the hair is dyed with a progressively more vivid color. The environment
map is represented by 40 SRBF lights, and our algorithm runs at 8.3 fps on an NVIDIA GTX 580.

Abstract

We present an interactive algorithm for hair rendering and ap-
pearance editing under complex environment lighting represented
as spherical radial basis functions (SRBFs). Our main contribu-
tion is to derive a compact 1D circular Gaussian representation
that can accurately model the hair scattering function introduced
by [Marschner et al. 2003]. The primary benefit of this represen-
tation is that it enables us to evaluate, at run-time, closed-form in-
tegrals of the scattering function with each SRBF light, resulting
in efficient computation of both single and multiple scatterings. In
contrast to previous work, our algorithm computes the rendering
integrals entirely on the fly and does not depend on expensive pre-
computation. Thus we allow the user to dynamically change the
hair scattering parameters, which can vary spatially. Analyses show
that our 1D circular Gaussian representation is both accurate and
concise. In addition, our algorithm incorporates the eccentricity of
the hair. We implement our algorithm on the GPU, achieving in-
teractive hair rendering and simultaneous appearance editing under
complex environment maps for the first time.
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1 Introduction

In hair rendering, it is often desirable to support the dynamic chang-
ing of hair’s scattering properties. This enables artists and designers
to edit hair appearance at will, and receive realistic rendering feed-
backs at interactive speed. Existing methods already support such
capability under simple lighting, such as a few point or directional
lights [Zinke et al. 2008; Yuksel and Keyser 2008; Shinya et al.
2010; Sadeghi et al. 2010]. However, it remains a challenge to ren-
der and simultaneously edit hair appearance under complex light-
ing such as environment maps [Debevec and Malik 1997]. Such
lighting is important to convey the rich look of the hair in natural
illumination conditions.

The main difficulty with environment lighting is the large number of
directional lights that must be considered. An effective solution is
to approximate the environment map as a set of spherical radial ba-
sis functions (SRBFs), yielding a low-dimensional representation.
This approach has been studied in the context of precomputed light
transport and BRDF aprpoximation [Tsai and Shih 2006; Green
et al. 2007; Wang et al. 2009]. For hair rendering, Ren et al. [2010]
proposed to integrate the hair scattering function with each SRBF
light to produce realistic rendering effects. Their method incorpo-
rates both single and multiple scatterings. Unfortunately, as they
precompute the integrals of the scattering function with sampled
SRBF lights into 4D tables, their method requires fixing hair scat-
tering parameters at precomputation time, disabling online editing.

In this paper, our goal is to enable realistic rendering and simulta-
neous editing of hair appearance under complex environment light-
ing. Similar to previous work, we represent an environment map
using SRBF lights. Our main contribution is to derive a compact 1D
circular Gaussian representation that can accurately model the hair
scattering function introduced by [Marschner et al. 2003]. Analyses
show that our representation is both concise and accurate. Exploit-
ing the properties of Gaussian functions, the primary benefit of this
representation is that it enables the run-time evaluation of closed-
form integrals of the scattering function with SRBF lights. This
results in efficient computation of both single and multiple scatter-
ings, without the need of expensive precomputation. By using this
approach, our algorithm evaluates the rendering integrals entirely
on the fly, allowing the user to dynamically change hair scattering
parameters at will. Our approach can be seen as an accurate model
of the scattering function that is particularly suitable for integration
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with SRBF lights. In addition, our algorithm successfully incorpo-
rates the eccentricity of the hair, which is important for capturing
the hair’s rich look.

We provide a GPU implementation that achieves interactive rates
for rendering and editing of spatially-varying hair appearance un-
der environment maps. We believe the ability to dynamically adjust
the hair appearance under natural lighting provides artists a conve-
nient way for designing hairs. Our method is the first to achieve
such capability, including the editing of spatially-varying hair pa-
rameters and hair eccentricity effects. Figure 1 shows an example
of our results captured at run-time.

2 Related works

Hair Rendering has attracted significant research attention over the
years. A comprehensive survey can be found in [Ward et al. 2007].
Some of the early work focused on studying how a single hair fiber
reflects the light, which can be described by a hair scattering func-
tion. Kajiya and Kay [1989] proposed the first hair scattering func-
tion, which has been a simple and popular model in many appli-
cations. Marschner et al. [2003] proposed a more accurate model,
inspired by the measurements of real human hair fibers. Under dis-
tant lighting, they model each hair fiber as a dielectric cylinder and
derive a scattering function that consists of three light paths: R,
TT, and TRT (see Fig 2(b)). Zinke and Weber [2007] proposed a
more general model that allows for near-field lighting. A number
of recent papers have also studied how to estimate hair scattering
parameters and geometry from a single photograph [Zinke et al.
2009; Bonneel et al. 2009] or from real hairs using a sophisticated
capturing device [Paris et al. 2008; Jakob et al. 2009].

For interactive hair rendering, many existing methods have success-
fully addressed the issue of self-shadowing in a large number of
hair fibers. Some representative techniques include deep shadow
maps [Lokovic and Veach 2000], density clustering [Mertens et al.
2004], opacity shadow maps [Kim and Neumann 2001; Sintorn and
Assarsson 2008], deep opacity maps [Yuksel and Keyser 2008], and
occupancy maps [Sintorn and Assarsson 2009].

As light can bounce many times inside the hair, realistic hair render-
ing requires the accurate simulation of multiple scattering effects,
which are particularly important for light colored hair. Standard
path tracing is too expensive for computing multiple scattering, thus
researchers have exploited photon mapping [Moon and Marschner
2006; Zinke and Weber 2006] and spherical harmonics approxima-
tion [Moon et al. 2008] to greatly improve offline rendering speed.
In [2008], Zinke et al. introduced a dual scattering approximation
that achieves real-time rendering of multiple scattering. Using this
model, Ren et al. [2010] proposed a technique to support interac-
tive hair rendering under environment lighting represented as SRBF
lights. This produces rich hair appearance under natural illumina-
tion. However, their technique requires fixing scattering parameters
offline and ignores the eccentricity of the hair. An alternative way
to compute multiple scattering effects is by using a plane-parallel
model, as proposed by [Shinya et al. 2010]. While this method is
fast under simple lighting, it is still very expensive for rendering
under area or environment lights.

Recently, Sadeghi et al. [2010] proposed an artist-friendly control
(AFC) model for intuitive editing of hair parameters. Their method
assumes simple lighting conditions. As their model is fundamen-
tally based on Marschner’s physically-based scattering function,
and the dual scattering approximation, it can be combined with
our method in order to provide an intuitive hair editing framework.
d’Eon et al. [2011] proposed an energy-conserving hair scatter-
ing model by considering higher order light paths and using non-
Gaussian longitudinal lobes.

SRBF approximates a function defined on the sphere using spheri-
cal Gaussians. Compared to other bases such as spherical harmon-
ics and wavelets, SRBF provide excellent local support as well as
closed-form solutions for computing product integrals. Therefore it
proves to be an excellent choice for representing environment maps
and BRDFs [Tsai and Shih 2006; Green et al. 2007; Wang et al.
2009]. Our work uses the circular Gaussian, which is a 1D version
of SRBF and thus shares the same benefits. Additionally, it allows
us to formulate the integration involving hair scattering functions
as 1D integrals, enabling fast and accurate computation.

Material Editing under Environment Maps, such as BRDF edit-
ing [Ben-Artzi et al. 2006; Sun et al. 2007; Wang et al. 2009], re-
fractive material editing [Sun et al. 2008], translucent material edit-
ing [Xu et al. 2007; Wang et al. 2008] and dynamic participating
media [Navarro et al. 2009], has drawn a lot of attention in recent
years. As an addition to them, ours is the first to enable hair material
editing under environment maps.

3 Background

Terminology. For notations and symbols we follow [Marschner
et al. 2003] and [Ren et al. 2010]. Fig 2(a) shows the local geometry
of a hair fiber. We use ωi = (θi,φi) to denote the lighting direction,
and ωo = (θo,φo) to denote the viewing direction. All directions
and angles are expressed in the local frame of the hair fiber. Table 1
lists the set of symbols that we use throughout the paper.

Lighting Approximation. As in [Ren et al. 2010] and [Tsai and
Shih 2006], an environment map L is approximated as the sum of a
set of SRBFs. Using j as the index of an SRBF light:

L(ωi)≈∑ j L j G(ωi;ω j,λ j) (1)

where L j is the coefficient, G(ωi;ω j,λ j) = exp(2(ωi ·ω j−1)/λ 2
j )

is an SRBF centered at ω j with bandwidth λ j. In the following we
simply write it as G j(ωi). Note that the bandwidth λ j is defined
equivalently but expressed differently from [Ren et al. 2010]. The
purpose is to make it consistent with 1D circular Gaussians, which
we will use later to approximate the hair’s scattering function.

Single Scattering. Following [Ren et al. 2010], the single scatter-
ing radiance viewed from direction ωo under a set of SRBF lights
can be approximated as:

L(ωo)≈ D ∑ j L jT̃ (ω j,λ j)
∫

Ω

G j(ωi)S(ωi,ωo) cosθi dωi (2)

where D is the hair fiber’s diameter, S(ωi,ωo) is the bidirectional
scattering function, and T̃ (ω j,λ j) is the effective transmittance, es-
timated using a summed area table (SAT) built from a convolution
optimal depth map. Essentially T̃ measures the average attenuation
of an SRBF light j due to transmission of the light through the hair.

Multiple Scattering. Using a dual scattering model [Zinke et al.
2008], Ren et al. [2010] approximate the multiple scattering radi-
ance (denoted as LD) under environment lighting as:

LD(ωo)≈ D ∑ j L j Tf (ω j)
∫

Ω

ψ f (·) SD(ωi,ωo) cosθi dωi (3)

where Tf (ω j) is the forward scattering transmittance along the
shadow path of light j, and SD(ωi,ωo) is the Bidirectional Curves
Scattering Distribution Function (BCSDF). The main idea of dual
scattering is to estimate SD as the sum of a global scattering com-
ponent and a local scattering component, thus:

SD(ωi,ωo) = S(ωi,ωo)+db Sback(ωi,ωo) (4)
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Figure 2: Illustration of (a) notations, and (b) scattering paths.

where S is the bidirectional scattering function and Sback is the
backward scattering function accounting for local scattering. db is
a constant set between 0.6−0.8. Back to Eq 3, ψ f (·) is the spread
function that approximates the final angular distribution of the front
scattered radiance, and is computed as:

ψ f (·) = s̃ f (φ j,φi)gu(θi; θ j,σ f (ω j,λ j))/cosθ j (5)

where θ j, φ j are the inclination and azimuth angles of ω j; s̃ f (φ j,φi)
is defined as 1/π for forwarding scattering and 0 for backward scat-
tering; and gu(θi; θ j,σ f ) is a normalized 1D Gaussian function of
θi centered at θ j with bandwidth σ f . Here σ f =

√
[λ 2

j + σ̄2
f (ω j)],

where σ̄2
f (ω j) is the average forward scattering spread.

Summary of [Ren et al. 2010]. As the integrals involved in Eq. 2
and 3 are independent of hair geometry, they can be precomputed
into 4D tables by sampling all possible SRBFs offline. At run-time,
the effective transmittance T̃ (in single scattering) is approximated
by convolution optical depth maps; the forward scattering trans-
mittance Tf and spread σ f (in multiple scattering) are evaluated
by interpolation from sparse samples; and then the two integrals in
Eq. 2 and 3 can be estimated by querying the precomputed 4D ta-
bles. This allows for interactive hair rendering with 30∼ 60 SRBF
lights. Unfortunately, as the hair scattering coefficients are baked
into the precomputed tables, which take hours to compute, dynamic
editing of these coefficients is not possible. In addition, it’s unclear
how to incorporate the hair eccentricity into their approach.

4 Algorithm Details

Overview. This section describes our algorithms. We first review
the hair scattering model by Marschner et al. [2003], then derive
a compact 1D circular Gaussian representation to approximate the
model. We discuss the algorithms for rendering single scattering
and multiple scattering separately in Section 4.2 and 4.3.

Key idea. On a high level, our key idea is that an SRBF (i.e. the
lighting basis) can be separated into the product of two 1D circu-
lar Gaussians in the two spherical coordinates θ and φ (Eq. 11).
This matches the formulation of the hair scattering model, which
is also written as the product of a longitudinal (θ ) function and an
azimuthal (φ ) function (Eq. 6). The separation into 1D functions
allows us to quickly compute the rendering integral on the fly, by
using the analytic properties of Gaussians and the smoothness of
several run-time evaluated terms. Specifically, we exploit the prop-
erty that the product of two Gaussians is still a Gaussian, and we
introduce a simple 1D quadrature method to evaluate the integral
of a Gaussian with a smooth function (see Section 4.2.2). Finally,
the 1D representation also allows us to precompute certain integrals
into small 2D tables, which are used for run-time lookups.

4.1 Hair Scattering Model

Derived in [Marschner et al. 2003], the hair scattering func-
tion S(ωi,ωo) is the sum of three modes: SR (reflection), ST T
(transmission-transmission), and ST RT (transmission-reflection-
transmission). Thus S(ωi,ωo) = ∑t St(ωi,ωo), where the mode in-
dex t ∈ {R,T T,T RT}. Each term St is further represented as the
product of a longitudinal function Mt and an azimuthal function Nt :

St(ωi,ωo) = Mt(θh)Nt(η ,θd ,φ)/cos2
θd (6)

where θh, θd and φ are the half and difference angles, and η is the
index of refraction. The longitudinal function Mt is defined by:

Mt(θh) = gu(θh; αt ,βt) = 2gu(θi; 2αt −θo,2βt) (7)

which is a normalized 1D Gaussian of θi centered at 2αt −θo with
bandwidth 2βt . Here αt and βt are the longitudinal shift and band-
width of each mode, caused by the tilting of the hair scales.

The azimuthal function Nt is derived by examining the scattering
paths through a circular cross profile, shown in Figure 2(b). First,
an analysis of reflections and refractions of a ray through the cir-
cle reveals that the azimuthal difference angle φ = φo− φi can be
expressed as a function of the incident direction offset h:

φ(p,h) = 2psin−1(h/η
′(η ,θd))−2sin−1(h)+ pπ (8)

where η ′ is the effective index of refraction (see Table 1), p is the
number of internal reflections. It is 0 for the R mode, 1 for the TT
mode and 2 for the TRT mode. This allows the azimuthal scattering
function Nt to be defined as:

Nt(η ,θd ,φ) = ∑
h

1
2

∥∥∥∥dφ

dh

∥∥∥∥−1
At(θd ,h) (9)

which sums over all h’s satisfying φ(p,h) = φ . Here At is given as:

AR(θd ,h) = F(η ,θd ,h)

AT T (θd ,h) = (1−F(η ,θd ,h))2T (σ ′a(θd),h) (10)

AT RT (θd ,h) = (1−F(η ,θd ,h))2F(η ,θd ,h)T 2(σ ′a(θd),h)

where F is the Fresnel reflection term, σ ′a is the effective absorp-
tion coefficient (see Table 1), T is an attenuation factor due to ab-
sorption on the internal paths, and is computed by T (σ ′a(θd),h) =

exp(−2σ ′a
√

1− h2

η ′2 ).

4.2 Computing Single Scattering

Substitute the scattering mode function defined in Eq 6 to the single
scattering integral in Eq 2, and define the result as Mt , we have:

Mt(ω j,λ j) =
∫

Ω

G j(ωi)St(ωi,ωo) cosθi dωi

=
∫

Ω

G j(ωi)Mt(θh)Nt(θd ,φ) cosθi/cos2
θd dωi

By expressing the SRBF G j in spherical coordinates θ and φ , we
can decompose it into the product of two 1D circular Gaussians (re-
fer to Appendix), and expand the integral over Ω to double integrals
over θi and φi:

Mt(ω j,λ j) =
∫ ∫

(gc
j(θi)gc

j(φi))Mt(θh)Nt(θd ,φ)
cos2 θi

cos2 θd
dφi dθi

=
∫

gc
j(θi)Mt(θh)

cos2 θi

cos2 θd

(∫
gc

j(φi)Nt(θd ,φ)dφi

)
dθi

≈
∫

g j(θi)Mt(θh)
cos2 θi

cos2 θd
Nt(λ ′j,φo−φ j,θd)dθi (11)
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Figure 3: (a): approximating NT T using a single circular Gaussian (Eq 16); (b): approximating NT RT using the sum of three circular Gaus-
sians (Eq 20); (c): approximating T (σ ′a(θd),h) using 4-th order Taylor expansion (Eq 18); (d): Plot of Nt cos2 θi/cos2 θd , t ∈ (R,T T,T RT ).

η ,σa index of refraction, and absorption coefficient
αR, αT T , αT RT longitudinal shift for R,TT,TRT lobes
βR, βT T , βT RT longitudinal width for R,TT,TRT lobes
a,wc eccentricity, and azimuthal width of TRT lobes
θ ,φ longitudinal and azimuthal angles
ωi,ωo incoming and viewing directions
ω j,λ j center and bandwidth of an SRBF light j
θd = (θo−θi)/2; θh = (θo +θi)/2; φ = φo−φi; φh = (φo +φi)/2

h ∈ (−1,1) incident direction offset
η ′ =

√
[η2− sin2

θd ]/cosθd effective index of refraction
λ ′j = λ j/

√
[cosθi cosθ j] effective Gaussian bandwidth

σ ′a = σa/
√

[1− sin2
θd/η2] effective absorption coefficient

g(x; µ,λ ) = exp[−(x−µ)2/λ 2] 1D Gaussian
gu(x; µ,λ ) = g(x; µ,λ )/(

√
πλ ) normalized 1D Gaussian

gc(x; µ,λ ) = exp[ 2(cos(x−µ)−1)
λ 2 ] 1D circular Gaussian

G(ω;ω j,λ ) = exp[ 2(ω·ω j−1)
λ 2 ] SRBF

Table 1: List of symbols and notations used in this paper.

where gc
j(θi) = gc(θi; θ j,λ j) = exp[2(cos(θi−θ j)− 1)/λ 2

j ] and
gc

j(φi) = gc(φi; φ j,λ
′
j) = exp[2(cos(φi−φ j)−1)/λ ′2j ] are two 1D

circular Gaussians whose product equals G j(ωi). Here the effective
azimuthal Gaussian bandwidth λ ′j = λ j/

√
cosθi cosθ j. Note that

the last step of Eq 11 uses Nt to denote the inner integral over
dφi; also, it uses the fact that the 1D circular Gaussian gc

j(θi) is
well approximated by a 1D Gaussian g j(θi) = g(θi; θ j,λ j) (proof
is shown in Section 1 of the supplemental document). By changing
the integral variable from φi to φ ′i = φi−φ j, Nt can be rewritten as:

Nt(λ ′j,φo−φ j,θd) =
∫

gc(φ ′i ;0,λ ′j)Nt(θd ,φo−φ j−φ
′
i )dφ

′
i (12)

Essentially Eq 11 has turned the original rendering integral to two
1D integrals: the inner integral Nt and the outer integral Mt . In the
following we will explain how to evaluate these two integrals for
the three scattering modes t ∈ R,T T,T RT respectively.

4.2.1 Approximating the R Mode

In the R Mode (p = 0), the relationship of φ and h (Eq 8) is φ =
−2sin−1 h, and hence h = −sin(φ/2). Given this, the azimuthal
scattering function (Eq 9) can be written as:

NR(η ,θd ,φ) = 1
4 |cos(φ/2)|F(η ,θd ,−sin(φ/2))

The Fresnel term is defined using Schlick’s approximation [1994]:
F(η ,θd ,h)≈ F0 +(1−F0)(1− cosθd

√
1−h2)5, where F0 = (1−

η)2/(1+η)2 is the Fresnel value at 0 incident angle. Now NR can
be rewritten as a polynomial of cos(φ/2) up to degree 6:

NR(η ,θd ,φ)≈∑0≤k≤6 Ck(θd ,η)|cosk(φ/2)| (13)

where each coefficient Ck(θd ,η) is simply a polynomial of cosθd .
Substituting NR (Eq 13) to the inner integral (Eq 12) yields:

NR ≈∑k Ck(θd ,η)
∫

π

−π

∣∣∣∣cosk(
φo−φ j−φ ′i

2
)
∣∣∣∣gc(φ ′i ;0,λ ′j)dφ

′
i

= ∑k Ck(θd ,η)Ck(λ ′j, φo−φ j) (14)

where Ck is the product integral of the k-th power cosine function
with a circular Gaussian gc. Since it only depends on λ ′j and (φo−
φ j), and not on any scattering coefficient, it can be precomputed as
a 2D table and accessed online through table lookups. If the user
changes scattering parameters such as η , the coefficients Ck(θd ,η)
will be updated, but this is very fast to evaluate on the fly.

Now, let’s look back at Eq 11 to see how to calculate the outer inte-
gral MR. First, note that in that equation, the longitudinal function
Mt is a 1D Gaussian given by Eq 7, thus its product with another 1D
Gaussian g j(θi) is still a Gaussian (proof is given in Section 2 of
the supplemental document). Next, the remaining factor in the in-
tegral, cos2 θi/cos2 θd NR(λ ′j,φo−φ j,θd), is smooth as a function
of θi. This can be verified from our experiments in Fig 3(d). Thus
its product integral with a 1D Gaussian can be accurately estimated
using a numerical quadrature as detailed in the section below. In
general, the numerical integration only requires a few samplings of
NR at run-time, which can be quickly evaluated using Eq 14.

4.2.2 Product Integral with 1D Gaussian

Given a 1D Gaussian g(x; µ,λ ) and an arbitrary function f (x), their
product integral over the range [r0, r1] is defined as:∫ r1

r0

g(x; µ,λ ) · f (x)dx

In general, this integral has no analytic solution. However, if f (x)
is smooth, it can be numerically estimated using a piecewise linear
approximation of f (x). To do so, consider taking m+1 samples xs,
s∈ [0,m] and approximate f (x) on each segment [xs,xs+1] as f (x)≈
bs x+cs, where bs and cs are the linear coefficients calculated from
f (xs) and f (xs+1). We can now rewrite the product integral as:

∑0≤s<m

∫ xs+1

xs

g(x; µ,λ ) · (bs x+ cs)dx

which can be easily computed because the product integral of a
1D Gaussian with any polynomial function has an analytic solution
(this property is proved in Section 3 of the supplemental document).

Clearly the number of samples m + 1 affects the accuracy of
this approximation. In our case, since we always integrate over
[−π/2,π/2], we simply compute m + 1 samples by picking the
first m− 1 samples uniformly in the range (µ − (m− 2)λ/2) to
(µ +(m−2)λ/2), plus the two endpoints −π/2 and π/2. We have
found that choosing m = 4 is usually sufficient for the hair scat-
tering function. Fig 5 provides a comparison when using different
number of samples. If desired, higher accuracy can be achieved by



increasing the number of samples, or using a higher order polyno-
mial approximation.

4.2.3 Approximating the TT Mode

In the TT mode (p = 1), the relationship of φ and h in Eq 8 is:
φ = 2sin−1 (h/η ′)−2sin−1 h+π . From Eq 10 and Eq 9, we have:

NT T (η ,θd ,σa,φ) =
1
2

∣∣∣∣dφ

dh

∣∣∣∣−1
(1−F(θd ,h))2 T (σa,θd ,h) (15)

Our experiments in Fig 3(a) show that in practice the function NT T
can be very well approximated using a single circular Gaussian cen-
tered at φ = π , with coefficient btt and bandwidth λtt . Thus:

NT T (η ,θd ,σa,φ)≈ btt (η ,θd ,σa)gc(φ ; π,λtt(η ,θd ,σa)) (16)

For btt , we set it directly as the value of NT T at φ = π . To set the
bandwidth λtt , note that

∫
π

−π
gc(φ ,π,λtt)dφ ≈√πλtt (see Section 4

of the supplemental document), thus we estimate λtt by preserving
the energy of NT T :

λtt =
1√
π btt

∫
π

−π

NT T (η ,θd ,σa,φ)dφ (17)

To estimate
∫

π

−π
NT T , observe that in Eq 15 the attenuation function

T depends on h. Because this function is typically smooth, we can
use a 4-th order Taylor expansion to factor out its dependency on h:

T (σa,θd ,h)≈∑k∈{0,2,4} ak(θd ,σa)hk (18)

where each ak(θd ,σa) is a Taylor expansion coefficient and has an
analytic expression. Fig 3(c) shows the error caused by using the
Taylor expansion. From the figure, we can see that the approxima-
tion error is generally very small. Combining Eq 18 and 15, we can
evaluate

∫
π

−π
NT T as (note that in the following derivation, we have

changed the integral variable from dφ to dh):

1
2

∫ 1

−1
(1−F(η ,θd ,h))2

(
∑k∈{0,2,4} ak(θd ,σa)hk

)
dh

=
1
2 ∑k∈{0,2,4} ak(θd ,σa)

∫ 1

−1
(1−F(η ,θd ,h))2 hk dh (19)

We denote the integral
∫ 1
−1(1− F(η ,θd ,h))2 hk dh in the above

equation as H T T
k (η ,θd). Note that each H T T

k (k = 0,2,4) can
be precomputed and stored as a 2D table of η and θd .

While we could also estimate λtt by sampling NT T at a few places,
we found our energy-preserving estimation (Eq 17) is more accu-
rate and in fact cheaper to compute on the fly. Now that function
NT T is approximated by a single circular Gaussian (Eq 16), we can
substitute NT T to Eq 12 to evaluate NT T . Since the product of two
circular Gaussians is still a circular Gaussian (see Section 5 of the
supplemental document), the integral can be easily computed us-
ing an analytic solution. Thus we have completed the evaluation of
NT T .

The outer integral MT T (Eq 11) is a product integral between a
Gaussian g j(θi) and function NT T cos2 θi/cos2 θd , which is typi-
cally smooth. This is in the same form with MR discussed in Sec-
tion 4.2.1, therefore it can be evaluated in the same way as MR.

4.2.4 Approximating the TRT Mode

In the TRT mode, the azimuthal function NT RT is more complex.
As described by [Marschner et al. 2003], it is symmetric around
φ = 0 and contains two peaks when η ′ < 2. The two peaks will
gradually merge into one single peak centered at φ = 0 when η ′
increases beyond 2. When η ′ < 2, directly using Eq 9 will result
in infinite values at the two peaks. Since the hair surface is typ-
ically rough, Marschner et al. proposed to replace the two peaks
with finite-valued Gaussian functions centered at the peak loca-
tions. Fig 3(b) plots NT RT under different θd (hence η ′) values.

Our method employs a similar way to remove the infinite values.
As in [Marschner et al. 2003], when η ′ < 2, we use two Gaussians
centered at the peak locations; however, we use an additional Gaus-
sian centered at φ = 0 to approximate the residue, resulting in a
3-Gaussian approximation. Detailed are discussed below.

When η ′ < 2. NT RT is approximated as the sum of 3 Gaussians:

NT RT ≈ b1(gc(φ ; φ
∗,λ1)+gc(φ ;−φ

∗,λ1))+b2 gc(φ ; 0,φ∗) (20)

where φ∗ is the peak location calculated as in [Marschner et al.
2003]: φ∗ = φ(h∗) = φ(

√
(4−η ′2)/3); λ1 = wc is the width of

peak, which is a user adjustable parameter to control the surface
roughness. The coefficient b2 is set as the residue value at φ = 0:

b2 = NT RT (0)(1−gc(0;φ
∗,wc))2 (21)

We observe that b2 quickly decreases to zero as η ′ increases to-
wards 2. For the coefficient b1, [Marschner et al. 2003] proposed
to estimate b1 using the local curvature d2φ/dh2. Here we propose
a different estimation by preserving the energy of NT RT , which is
more physically accurate. Specifically, we estimate b1 as:

∫
π

−π
NT RT (φ)dφ − ∫ π

−π
b2 gc(φ)dφ

2∗ (∫ π

−π
gc(φ ; φ∗,wc)dφ)

≈
∫

π

−π
NT RT (φ)dφ −b2

√
π φ∗

2
√

πwc

where the
∫

π

−π
NT RT term is evaluated at run-time using a similar

technique as described in Section 4.2.3. To do so, we first use a
4-th order Taylor expansion of the T 2(σ ′a(θd),h) term (Eq 10) to
factor out its dependency on h:

T 2(σ ′a(θd),h)≈∑k∈{0,2,4} ck(θd ,σa)hk (22)

where each ck(θd ,σa) is a Taylor expansion coefficient that has an
analytic expression. Next, the integration of NT RT over variable φ

from −π to π can be changed to integrating over variable h from
−1 to 1, which allows us to rewrite

∫
π

−π
NT RT as:∫

π

−π

NT RT (φ)dφ ≈ 1
2 ∑k∈{0,2,4} ck(θd ,σa)H T RT

k (η ,θd) (23)

where H T RT
k (η ,θd) =

∫ 1
−1(1−F(η ,θd ,h))2 F(η ,θd ,h)hk dh (k =

0,2,4) is precomputed into a 2D table and accessed on the fly.

When η ′ > 2. NT RT is approximated using a single Gaussian:
NT RT ≈ b3 gc(φ ; 0,λ3), where the coefficient b3 is directly set as
the value of NT RT at φ = 0, and λ3 is determined by preserving the
energy similar to the η ′ < 2 case. However, this may lead to discon-
tinuity in the representation when η ′ changes across 2. For exam-
ple, when η ′ < 2, the Gaussian bandwidth is wc; and when η ′ > 2,
the bandwidth is λ3. To solve this issue, we follow [Marschner
et al. 2003] to use a modified bandwidth that smoothly interpolates
between wc and λ3 over a small range ∆η ′, whose value is typi-
cally between 0.2 and 0.4. Specifically, the interpolated bandwidth
λ ′3 = interp(wc,λ3,smoothstep(2,2 + η ′,η ′)). We also modify b3
to b3 λ3/λ ′3 to preserve the energy of the lobe.



Summary. When η ′ < 2 , we approximate NT RT using 3 circu-
lar Gaussians; when η ′ > 2, we approximate it using one circular
Gaussian. The coefficients and centers of the Gaussians are calcu-
lated through either analytic functions or query into precomputed
2D tables (H T RT

k ). Once NT RT is represented as circular Gaus-
sian(s), we can proceed to compute NT RT (Eq 12) as before, using
the fact that the product of two circular Gaussians is still a circular
Gaussian. Finally, the outer integral MT RT is evaluated using the
linear quadrature described in Section 4.2.2.

4.2.5 Handling Eccentricity in the TRT Mode

Normally the refractive index η of the hair fiber is set to 1.55. To
achieve eccentricity effects due to the elliptical cross sections of real
hairs, [Marschner et al. 2003] proposed to use a varying refraction
index η∗ that depends on the azimuthal half angle φh:

η
∗
1 = 2(η − 1)a2−η +2, η

∗
2 = 2(η−1)a−2−η +2,

η
∗(φh) = ((η∗1 +η

∗
2 )+ cos(2φh)(η∗1 −η

∗
2 ))/2 (24)

where a is the eccentricity parameter typically ranging from 0.8−
1.25. To incorporate eccentricity, we update and approximate the
integral NT RT (Eq 12 for the TRT mode) as:

NT RT =
∫

gc(φ ′i ;0,λ ′j)NT RT (η∗(φh),θd ,φo−φ j−φ
′
i )dφ

′
i

≈
∫

gc(φ ′i ;0,λ ′j)NT RT (η∗,θd ,φo−φ j−φ
′
i )dφ

′
i (25)

where in the last step, we have substituted η∗(φh) by its average
value η∗, computed as:

η∗ =
(∫

gc(φ ′i ; 0,λ ′j)η
∗(φh)dφ

′
i

)
/

(∫
gc(φ ′i ; 0,λ ′j)dφ

′
i

)
(26)

which is efficiently computed on the fly by re-using the precom-
puted cosine-Gaussian integral tables Ck prepared for the R mode
(see Eq 14). Specifically, using the cosine’s double-angle formula,
we have cos(2φh) = 2 cos2(φh)− 1 = 2 cos2( φ ′i +φ j+φo

2 )− 1. Thus
we only need to access C0 and C2 to compute η∗.

The purpose of the η∗ substitution is to remove the dependency of
η∗(φh) on the integral variable φ ′i , which makes it hard to model
NT RT as a Gaussian representation. By using the average value η∗,
we are able to reproduce convincing eccentricity effects while in-
curring little modification to our existing algorithm. Fig 4 provides
a comparison of our method to the ground truth.

4.3 Computing Multiple Scattering

In this subsection we discuss how to compute multiple scattering.
Physically, multiple scattering is more complex than single scatter-
ing; however, using the dual scattering approximation [Zinke et al.
2008], multiple scattering is formulated as the sum of a global com-
ponent and a local component, both of which can be incorporated
into our algorithm similarly to single scattering. The key idea is
again to exploit the 1D circular Gaussian representations we de-
rived in Section 4.2 for the three scattering modes.

4.3.1 Global Multiple Scattering

According to Eq 3, 4 and 5, the global multiple scattering M G
t for

each SRBF light j and each scattering mode t is computed as:

M G
t =

∫
ψ f (·) St(ωi,ωo) cosθi dωi

= 1
cosθ j

∫
s̃ f (φ j,φi)gu(θi; θ j,σ f )Mt(θh)Nt(θd ,φ) cosθi dωi

= 1
cosθ j

∫
gu(θi; θ j,σ f )Mt(θh)

cos2 θi

cos2 θd
N G

t (φo−φ j,θd)dθi (27)

where the last step expands the integral over dωi to double integrals
similar to Section 4.2; and the inner integral is denoted as N G

t :

N G
t (φo−φ j,θd) =

∫
Nt(θd ,φ) s̃ f (φ j,φi)dφi

=
1
π

∫
φ j+π/2

φ j−π/2
Nt(θd ,φo−φi)dφi (28)

In other words, N G
t is just an integral of Nt from (φ j − π/2) to

(φ j + π/2). This is similar to the single scattering Nt defined in
Eq 12, but is simpler as the gc term does not appear in the integral.

Thus to compute N G
t for each of the R, TT, TRT modes, we can

directly use our derivations of Nt from Section 4.2. Specifically: 1)
NR can be expressed as a sum of polynomials of cosφ (Eq 13); 2)
NT T can be approximated by a single circular Gaussian centered at
φ = π (Eq 16); 3) NT RT can be approximated by either one circu-
lar Gaussian (when η ′ > 2) or the sum of three circular Gaussians
(Eq 20, when η ′ < 2). Using these approximations, all of NR, NT T
and NT RT have closed form integration formulas, so N G

t can be
evaluated on the fly.

To evaluate the outer integral M G
t , we observe that the product of

gu(θi; θ j,σ f ) and Mt is still a Gaussian. Therefore we can apply the
same method described in Section 4.2.2 to evaluate the quadrature
of cos2 θi/cos2 θdN G

t . As this function is quite smooth, we found
the approximation works very well in practice.

4.3.2 Local Multiple Scattering

The local multiple scattering M L
t is computed as:

M L
t = 1

cosθ j

∫
s̃ f (φ j,φi)gu(θi; θ j,σ f )Sback(ωi,ωo) cosθi dωi

Here the backward scattering function Sback is [Zinke et al. 2008]:

Sback(ωi,ωo)= 2
cos2 θd

Ab(θd)sb(φi,φo)gu(θi +θo; ∆b(θd),σb(θd))

where sb(φi,φo) is 1/π for backward scattering directions (i.e.
cos(φi − φo) > 0), and 0 for forward scattering directions (i.e.
cos(φi− φo) < 0). Ab(θd), ∆b(θd), σb(θd) are the average back-
ward attenuation, longitudinal shift and variance respectively. They
are all 1D functions of the incident angle θd .

Combining the above two equations, we can rewrite M L
t as:

M L
t = 2

cosθ j

(∫
s̃ f (φ j,φi)sb(φi,φo)dφi

)
· (29)(∫

gu(θi; θ j,σ f )gu(θi; ∆b(θd)−θo,σb(θd))Ab(θd)
cos2 θi

cos2 θd
dθi

)
In other words, it is the product of two 1D integrals. The first inte-
gral, which is over dφi, can be easily derived analytically:∫

s̃ f (φ j,φi)sb(φi,φo)dφi =
(
π−

∣∣φ j−φi
∣∣)/π

2 (30)

The second integral, which is over dθi, is more complex. We eval-
uate it as follows. First, the function gu(θi; ∆b(θd)− θo,σb(θd))



is strictly not a Gaussian, because its parameters (center and band-
width) depend on θd , which in turn depends on the variable θi. To
remove this dependency, our solution is to substitute ∆b(θd) and
σb(θd) by their mean values computed over θi ∈ [θ j−σ f ,θ j +σ f ]:

∆̃b =

∫ θ j+σ f
θ j−σ f

∆b(
θi−θo

2 )dθi

2σ f
, σ̃b =

∫ θ j+σ f
θ j−σ f

σb(
θi−θo

2 )dθi

2σ f
(31)

Note that the integration range is essentially the support of the
gu(θi; θ j,σ f ) function in Eq 29. These integrals can be efficiently
computed by using 1D SATs of ∆b(θd) and σb(θd) built on the fly.

The two mean values above allow us to define a real Gaussian func-
tion gu(θi; ∆̃b(θd)− θo, σ̃b(θd)), which will be further multiplied
with gu(θi; θ j,σ f ) in Eq 29. This results in a new Gaussian, whose
product integral with the remaining factor Ab(θd) cos2 θi/cos2 θd
can be quickly evaluated using the linear quadrature method de-
scribed in Section 4.2.2.

Next, we describe how to evaluate the terms Ab(θd), ∆b(θd), and
σb(θd)) in Eq 29. According to [Zinke et al. 2008], these terms
are all defined as functions of a f (θd), ab(θd), α f (θd), αb(θd),
β f (θd), β b(θd), where a,α,β stand for the average scattering at-
tenuation, shift, and variance; and the subscripts f /b indicate the
forward/backward scattering respectively. These definitions can be
found in Section 6 of the supplemental document. Using forward
scattering as an example: the average forward attenuation a f is
computed by integrating the hair’s scattering function S over φd as
well as ωo:

a f (θd) =
1
π

∫
Ω f

∫
π/2

−π/2
S(θd ,φd ,ωo) cosθd dφd dωo (32)

Note that S is the sum of three scattering modes. For each mode t,
we expand the above integral by converting the outer integral (over
Ω f ) to double integrals over φo and θo:

a f ,t =
1
π

∫ π

2

− π

2

∫ 3π

2

π

2

∫ π

2

− π

2

Mt((θd +θo)/2)Nt((θd −θo)/2,φo−φd) ·

(cosθo cosθd)/cos2((θd −θo)/2)dφd dφo dθo

Noting that scattering occurs at θo = −θi, we can substitute (θd −
θo)/2 by θd , allowing us to separate the triple integral to:

a f ,t ≈
1
π

(∫ π

2

− π

2

Mt((θd +θo)/2) cosθo cosθd
cos2((θd−θo)/2) dθo

)
·(∫ 3π

2

π

2

∫ π

2

− π

2

Nt(θd ,φo−φd)dφd dφo

)
(33)

In the above, the 1D integral involving Mt can be evaluated using
our linear quadrature (Section 4.2.2). The 2D integral involving Nt

is equal to 2
∫

π

0
φ Nt(θd ,φ)dφ , the proof of which can be found

in Section 7 of the supplemental document. Note that this integral
can be analytically computed, again because we have previously
modeled Nt either as a sum of polynomials of cosφ (R mode) or
circular Gaussians (TT and TRT modes), whose product integrals
with φ all have analytic solutions.

Finally, the average forward scattering shift α f is calculated as a
weighted sum of the longitudinal shifts αR, αT T , and αT RT using
their corresponding attenuation a f ,t as weights; and the average for-

ward scattering variance β
2
f is the weighted sum of the longitudinal

widths βR, βT T , and βT RT using the same weights. The backward
scattering terms (e.g. ab,t ) are similarly computed as in Eq 33, ex-
cept for integrating ωo over the backward scattering directions.

(a) (b) (c)

Figure 4: Result of eccentricity approximation. (a) shows circular
hair (eccentricity a = 1); (b) shows our approximation with eccen-
tricity a = 0.9; (c) show a reference with the same eccentricity.

5 Implementation

Preprocessing. In preprocessing, we follow [Ren et al. 2010] to fit
SRBF lights for each environment map. Next, we need to precom-
pute several 2D tables, including Ck(λ ′j, φo−φ j) (0≤ k≤ 6) for the
R mode (Eq 14); H T T

k (η ,θd) (k=0,2,4) for the TT mode (Eq 19);
and H T RT

k (η ,θd) (k=0,2,4) for the TRT mode (Eq 23). For these
tables, we use a resolution of 128 for the parameters λ ′j and η ,
which are sampled logarithmicly from the range λ ′j ∈ [0.001,10]
and η ∈ [1,10] respectively. For (φo−φ j) and θd we use a resolu-
tion of 64. The 3 tables of H T T

k (η ,θd) (k=0,2,4) are stored as a
single 2D texture utilizing the three color channels, so that only one
texture lookup is needed to obtain all 3 values. The H T RT

k (η ,θd)
tables are stored similarly. The 7 tables of Ck(λ ′j, φo − φ j) (0 ≤
k ≤ 6) are also stored as a single 2D texture, by placing the values
corresponding to k=1,3,5 and k=0,2,4,6 in adjacent texels. By uti-
lizing hardware texture interpolation, evaluating NR only requires
one texture lookup. Note that all these tables are computed only
once globally, and do not need to be updated when the user changes
hair scattering parameters on the fly.

Runtime Rendering. Our rendering algorithm is implemented us-
ing OpenGL shaders with multi-pass rendering. Each pass renders
the result of a subset of 16 SRBF lights, and accumulates contribu-
tions from other passes through blending. Hair fibers are rendered
as line primitives. For single scattering, the specific steps are:

1. The effective transmittance T̃ (ω j,λ j) (Eq 2) is obtained using
an SAT of the convolution optimal depth map [Ren et al. 2010];

2. For the R mode, the inner integral NR is evaluated by texture
lookups into Ck(λ ′j, φo−φ j) (Eq 14);

3. For the TT and TRT modes, the fitted circular Gaussian param-
eters are first estimated from the two energy terms

∫
π

−π
NT T

and
∫

π

−π
NT RT , which are evaluated via texture lookups into

H T T
k (η ,θd) and H T RT

k (η ,θd) (Eq 19 and 23). Following this,
each inner integral NT T and NT RT is computed as the product
of two circular Gaussians using the analytic formula. To account
for eccentricity in the TRT mode, a modified index of refraction
η∗ is calculated via texture lookups into Ck(λ ′j, φo−φ j) (Eq 26),
and is used when evaluating NT RT ;

4. Finally, we employ the linear quadrature method (Section 4.2.2)
to evaluate the outer integrals Mt (Eq 11). Depending on the
number of samples m + 1, this requires multiple evaluations of
NR, NT T , and NT RT , which are obtained in steps 2-3.

To compute multiple scattering, we first obtain the forward scat-
tering transmittance Tf (ω j) and spread σ̄2

f (ω j) (Eq 3 and 5) us-
ing a sparse sampling approach proposed in [Ren et al. 2010]. We
then compute the global and local multiple scattering components



Result images Differences ×8

(a) reference (b) m = 6 (c) m = 4 (d) m = 2 (e) m = 4 (f) m = 2

Figure 5: Results of our linear quadrature method described in Section 4.2.2. (a) is computed using our method with a large number of
segments m=200, which we treat as a reference; (b,c,d) show the results using a much smaller number of segments: m = 6,4,2 respectively;
(e) and (f) show the magnified difference images of the m = 4 and 2 cases with the reference. Note that at m = 2, our result has subtle but
observable differences compared to the reference; and at m = 4, our result is almost indistinguishable from the reference.

(a) our S.S (b) S.S. by Ren et al. (c) our S.S.+M.S. (d) S.S.+M.S. by Ren et al. (e) reference

Figure 6: Comparison of our method to [Ren et al. 2010] and reference. (a) and (b) compare the single scattering (S.S.) effect; (c) and (d)
compare the full single + multiple scattering (S.S.+M.S.) effect; (e) is a reference image including both single and multiple scattering effects
generated using a photon mapping approach [Moon and Marschner 2006]. In both our method and [Ren et al. 2010], the environment light
is approximated by 41 SRBF lights. Note that the images match well visually and the differences are subtle.

separately. Computing the global multiple scattering integral M G
t

(Eq 27) is very similar to computing the single scattering integral,
thus they share largely the same steps as described above.

To compute local multiple scattering M L
t (Eq 29), we first sam-

ple the average terms Ab(θd), ∆b(θd), σb(θd) into a 1D texture
of resolution 128, and compute the SATs of ∆b(θd) and σb(θd).
These then allow us to obtain the mean values ∆̃b and σ̃b via tex-
ture lookups. Finally we use the linear quadrature again to evaluate
M L

t . Note that the 1D textures are computed and updated on the
fly whenever the hair scattering parameters are modified. The total
computation overhead is very small.

In sum, as we choose m = 4 piecewise linear segments, for each
SRBF light, computing single scattering at any shading point re-
quires a total of 14 texture lookups, and multiple scattering requires
11 texture lookups. Currently, we do not incorporate the view trans-
parency effect, which can be easily added using techniques such as
occupancy maps [Sintorn and Assarsson 2009].

6 Comparisons and Results

In this section we present results of our method and comparisons
to previous work. Many hair geometry models are courtesy of Cem
Yuksel et al. [2008], Zinke et al. [2008], and Selle et al. [2008]. Our
parameters and units are set by following [Marschner et al. 2003].

Accuracy. To verify the accuracy of our method, we first math-
ematically analyze the proposed 1D circular Gaussian representa-
tion. In Fig 3 (a,b) we compare our approximated NT T and NT RT
functions to the ground truth computed at three different incident
angles θd = 0,π/6 and π/3. In (c) we compare the 4-th order Tay-
lor expansion of the attenuation factor T to the ground truth com-

(a) (-0.05, 0.16) (b) (-0.05, 0.09) (c) (-0.34, 0.09)

Figure 7: Editing the longitudinal shift and width (αR, βR). Note
the resulting change in the hair’s highlights.

puted with three difference absorption coefficients σa = 0.2,0.6 and
1.0. Note that in all examples, our approximations match the refer-
ences very well. We do not plot the NR function because it does not
involve a circular Gaussian approximation.

Next, we examine the linear quadrature method described in Sec-
tion 4.2.2. Recall that we use it to compute all product inte-
grals of 1D Gaussian with a function in the form of Nt(λ ′j,φo −
φ j,θd)cos2 θi/cos2 θd , where t ∈ (R,T T,T RT ). Examples of these
functions, at parameter settings λ ′j = 0.5 and φo−φ j = 0 or π , are
plotted in Fig 3(d). The cases of NT T at φo− φ j = 0 and NT RT at
φo − φ j = π are omitted because they are almost zero. As illus-
trated, these functions are quite smooth, requiring only a few sam-
ples (segments) to accurately evaluate their integrals with a Gaus-
sian. Additional plots of these functions are provided in Section 9
of the supplemental document. Fig 5 shows the rendering results
computed using our method with different number of segments m,
and a comparison to ground truth. Observe that at the default choice
of m = 4, our result is almost indistinguishable from the reference.



(a) (0.03, 0.37) (b) (-0.26, 0.37) (c) (-0.26, 0.7)

Figure 8: Editing the longitudinal shift and width (αR, βR).

(a) (b) (c)

Figure 9: Editing index of refraction η and the azimuthal width
wc for the TRT caustic. (a) η = 1.54, wc = 0.06; (b) η = 1.65,
wc = 0.06; (c) η = 1.65, wc = 0.20.

In Fig 4 we evaluate the approximated eccentricity described in
Section 4.2.5. Our approximation produces visually matching re-
sult to the reference, which is computed by using the accurate ec-
centricity factor and summing up 1536 directional lights in a brute-
force way. By accounting for eccentricity, we allow the user to dy-
namically edit this parameter, resulting in realistic and interesting
variations in the hair appearance [Marschner et al. 2003].

Finally, in Fig 6, we compare our rendering results to the method
presented by [Ren et al. 2010] and the reference generated by pho-
ton mapping [Moon and Marschner 2006]. Note that for both single
and multiple scattering, the results look qualitatively the same and
the differences are subtle. However, our method allows for the dy-
namic editing of all scattering parameters in the Marschner model,
while Ren et al. require fixing these parameters at precomputation
time. Section 10 in the supplemental document provides additional
comparisons between our method and [Ren et al. 2010] under a
single SRBF light at different bandwidth and comparisons between
renderings computed with directional lights vs. SRBF lights.

Performance. All results are obtained on a PC with Intel Core 2
Duo 3.00 GHz CPU, 6 GB RAM and an NVIDIA GTX 580 GPU.
The image resolution is 720× 480. The rendering frame rates are
reported in Table 2. The rendering cost is roughly proportional to
the piecewise linear segments m, which we set to 4 by default. In
all examples we are able to achieve interactive frame rates.

Parameter editing. We show several examples of editing the
hair scattering parameters on the fly. All parameters defined in
the Marschner model can be modified. In Fig 1 we show that the
user paints directly onto the hair model to edit the spatially-varying
absorption coefficients. This results in a dynamic simulation of
hair coloring computed on the fly. In Fig 7, we edit longitudinal
shift αR and width βR, and the other parameters αT T = −αR/2,
αT RT = −3αR/2, βT T = βR/2, βT RT = 2βR are updated accord-
ingly. This simulates changing the tilting angle the hair scales. In
particular, in Fig 7(b), the longitudinal width βR is reduced, re-
sulting in sharper specular highlights. In Fig 7(c), the longitudinal
shift αR is reduced, causing the specular highlights shift downward.
Fig 8 gives another example of editing longitudinal shift and width.

Fig 9 shows the editing of the index of refraction and the azimuthal

(a) (b) (c) (d) (e)

Figure 10: Editing the absorption coefficient σa. (a) σa =
(0.36,0.36,0.36); (b) σa = (0.55,0.55,0.55); (c) σa = (1,1,1); (d)
σa = (0.27,0.39,0.65); (e) σa = (0.23,0.42,0.42). Note the change
in colors and back lighting effects due to the TT component.

data #fibers #points #SRBFs FPS

animation (Fig 1) 10k 270k 40 8.3
straight (Fig 6) 50k 1.25M 41 5.9
natural (Fig 7) 10k 1.5M 40 5.8
bob cut (Fig 8) 10k 350k 30 10.6

dark (Fig 9) 15k 1.0M 36 6.2
ponytail (Fig 10) 6k 100k 42 8.9

Table 2: Performance of examples demonstrated in our paper. The
timing includes both single and multiple scattering computations.

width wc for the TRT caustic. Observe that 1) increasing η in (b) re-
sults in a brighter reflection due to the larger Fresnel reflection term;
and 2) increasing wc in (c) results in smoother specular highlights.
Finally, Fig 10 shows the editing of the absorption coefficient, re-
sulting in color changes and back lighting effects caused by the TT
component. Please refer to the paper video for additional results.

7 Conclusions
To summarize, we have presented a new method for interactive hair
rendering and appearance editing under environment lighting rep-
resented as SRBF lights. We derive a compact 1D circular Gaussian
representation for the hair scattering function, allowing us to com-
pute their closed-form integrals with SRBF lights at run-time. We
provide a GPU implementation that achieves interactive rendering
and editing rates for spatially-varying hair parameters and arbitrary
environment maps. Such capability is important for design and pro-
totyping applications, and has not been achieved by previous work.

There are several directions for future work. First, we would like to
incorporate the artist-friendly model by [Sadeghi et al. 2010]. Since
this model is fundamentally based on Marschner’s model, the dual
scattering approximation, and the use cosine/Gaussian functions to
approximate the R, TT, TRT azimuthal functions, it can be directly
combined with SRBF lighting using our proposed method. Sec-
ond, we would like to extend our work to near-field light sources in
a global illumination environment, and are also interested in han-
dling furs represented by texture layers [Silva et al. 2010]. Finally,
our 1D circular Gaussian representation is not limited to real-time
applications – they can also benefit high-quality offline renderings,
as they provide a concise and accurate substitute for the original
hair scattering function.
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Appendix
Explanation of Eq 11. (Separation of SRBF G j into two 1D cir-
cular Gaussian). First, let’s express the directions ωi and ω j in
Euclidean coordinates:

ωi = [sinθi, cosθi cosφi, cosθi sinφi ]
ω j = [sinθ j, cosθ j cosφ j, cosθ j sinφ j]

Then, the dot product of ωi and ω j can be written as (using product-
to-sum rules in trigonometry):

ωi ·ω j−1 = [cos(θi−θ j)−1]+ cosθi cosθ j [cos(φi−φ j)−1]

Now divide both sides by λ 2
j /2, and apply the exponential function:

G(ωi;ω j,λ j) = gc(θi;θ j,λ j) ·gc
(

φi;φ j,λ j/
√

cos(θi) cos(θ j)
)

. �


