
In this work, our goal is to achieve global illumination on the GPU using an 
importance-driven point projection method. 



Global illumination is a classic problem in graphics research, and many recent 
techniques exploit the GPU to achieve interactive speed. Among them, virtual 
point lights are quite popular because of its simplicity and suitability for 
parallel processing. 



Here is a simple illustration of the idea. Assume the direct illumination of  the 
scene can be represented >>> onto a discrete set of points called the VPLs; 
then >>> given a shading point p, the contributions of the VPLs will be 
accumulated at that point to approximate indirect lighting. The accumulation 
is typically referred to as the final gather step. 

 



Most VPL-based techniques are focused on solving three problems. First, the 
number of VPLs directly affect the computation cost of the final gather, 
therefore there must be an efficient way to either select representative VPLs 
or group them into cluster to reduce the computation cost. 

Second, the visibility between each VPL and the shading point must be 
resolved, which can be done through a variety of techniques, such as shadow 
maps, z-buffers, or voxel-based approaches. 



Finally, although traditional VPLs are assumed to be diffuse, there are several 
recent papers that study how to incorporate glossy VPLs in order to produce 
glossy-to-glossy reflection effects. 



Among the existing work, the most relevant to ours are two papers published 
recently, where they use a single point cloud to represent both illumination 
and geometry. The main idea is to rasterize a microbuffer at every shading 
point by traversing a hierarchical structure of the points, and the microbuffer 
also serves as a z-buffer to resolve visibility. 



In this work, our main goal is to study an alternative method, where instead of 
building and traversing a point hierarchy, we use importance sampling and 
projection of the points to generate microbuffers. The reason we want to 
study such a method is because it provides several benefits, including its 
simplicity, its capability to directly incorporate glossy VPLs. In addition, it does 
not require building a tree of the points on the fly, therefore it can reduce the 
computation cost for fully dynamic scenes. 



This video demo shows our algorithm captured in real time. The user can 
modify any part of the scene, including the objects, light sources, spatially 
varying material properties and the viewpoint. Our method can faithfully 
capture indirect reflections as well as shadows, such as the area under the 
mattress shown here. And this is a Cornell box scene that contains some 
glossy objects. As the rendering is updated each frame, some noises are 
noticeable, which is due to the random sampling and progressive rendering as 
I will explain later. But you can see that overall the rendering quality converges 
very quickly within a second. 



This is a one slide quick overview of the our algorithm. We first discretize the 
scene into a set of uniformly distributed points, which are then partitioned 
into clusters; next, for each cluster we use random sampling to evaluate its 
importance; finally we draw importance samples from each cluster, and both 
the random and importance samples are projected into the microbuffer, 
which will be integrated with the BRDF to compute indirect lighting. 

4 minutes here. 



Now let me explain each step in detail. In the first step, we discretize the 
scene geometry into 256K points which we call the scene points. This is done 
using a parallel Poisson disk sampler on the surface. For each point >>> we 
compute its direct illumination radiance received from the main light sources. 
This includes 1 diffuse radiance and up to 4 glossy radiance lobes if the point 
is on a glossy material. 

 

Our ultimate goal is >>> project these points into the microbuffer of a shading 
pixel.  



Here is a visualization of the microbuffer computed at every pixel in this 
image. You can see that each microbuffer is essentially a tiny environment 
map that stores the incident radiance field at every pixel. It is parameterized 
using hemi-octahedral map and stored as 32x32 texture in GPU memory. 



Obviously it is not feasible to project all scene points, therefore our goal is to 
selectively choose some points for projection using an importance function. 
Intuitively, this importance function is defined as the estimated contribution 
of every scene point to the microbuffer. 



In our case, it is constructed as follows. First, we exploit the spatial coherence 
of the scene points by partitioning them into 512 clusters. This is done using a 
k-means clustering that considers both the position and normal of points. 
Next, we estimate one importance value for each cluster, and points within 
the same cluster are treated with equal importance. So essentially this results 
in a piecewise constant importance function. 



To define the per-cluster importance, we first realize if everything is diffuse, 
the importance value of a single point s can be defined as its delta projected 
solid angle at the shading pixel p. Notice that unlike bidirectional importance 
sampling, this definition does not consider the illumination radiance at the 
source points. This is because even if a point has no illumination radiance, it 
can still have an importance value because it may block the radiance of other 
points therefore casting indirect shadows.  



Given the importance value of a single point, the importance of a whole 
cluster can be estimated by drawing random samples from the cluster, and 
summing up the contribution of each individual sample. In practice, we 
usually select 4 random samples per cluster, which we found to be sufficient. 
In the diagram shown here, these random samples are indicated by blue dots. 
The number of samples can be increased if we need higher accuracy to 
estimate the cluster importance.  



For glossy surfaces, we can easily modify this equation by adding a BRDF term. 
This way, higher importance will be given to scene points that fall along the 
reflected direction at the shading pixel p.  



We can further include the glossy radiance lobe at the scene points into this 
equation, which can then lead to more efficient sampling of glossy-to-glossy 
reflection paths.  



After we are done evaluating each cluster, our final step is to draw importance 
samples by applying the importance function that we have just obtained. This 
is achieved by first selecting a cluster based on the importance PDF, then 
drawing a uniform random sample within the selected cluster. In the diagram 
shown here, the cluster importance is indicated by the darkness of the box, 
and the selected samples are indicated as green dots. As you can see, clusters 
with higher importance will have proportionally more samples drawn from 
them.  



Each selected point will be projected into the microbuffer,  which is a 32x32 
texture parameterized using hemi-octahedral mapping. Every pixel of the 
microbuffer stores the radiance as well as the depth value of the closest 
projected point. When a new point is added, we first find its texture 
coordinate using the mapping formula, which can be found in the paper.  



Then, if the point passes a depth test, its color and distance values will 
splatted into the microbuffer. Now, the reason for splatting is because the 
support size of a sample may be larger than one pixel, therefore we must 
calculate an appropriate splat size, which we call the adaptive splats. This is 
achieved by estimating a total solid angle represented by the sample, defined 
as its delta solid angle divided by the probability of selecting this sample. Then 
the total solid angle will be converted to a square splat to be pasted into the 
microbuffer. 

 



This slide shows a few examples of the microbuffers we generated. Each row 
corresponds to a different scene pixel. The leftmost column is the reference 
obtained by projecting all scene points in a brute force way. The rightmost 
column shows our results obtained using importance sampling and adaptive 
splats. The middle three columns are results obtained by fixed splats of 1, 2 or 
3 pixels in size. As you can see, the uniform splat either under fills or overfill 
the micorbuffers; while the adaptive splats produce the most faithful results. 

 

10 min 



The adaptive splat is more intuitive to explain with this simple example. Here 
during the random sampling step, cluster 2 is found to be more important 
than cluster 1, therefore more points will be drawn from cluster 2 during the 
importance sampling step. And consequently each such point represents a 
smaller support size. This is similar to Monte Carlo integration, where the 
estimator is inversely proportional to the sample probability. 

 

Also, notice that because the random sampling step already involved some 
computation that we can reuse for projection, for efficiency reasons, we 
project both the random and importance samples into the microbuffer. 



Now, the question is given a fixed total sample budget, such as 8 per thread, 
how many do we allocate to each category? Obviously if we allocate >>>> the 
budget completely to just one category, the algorithm will degenerate to 
uniform random sampling. This will lead to poor efficiency, indicated by the 
lack of indirect shadows in the outlined examples here.  



Empirically, we have determined that an equal number of allocation to each 
category provides the best result. This make sense intuitively, as we need 
some samples to help build the importance function, and then some samples 
to exploit the importance function. But keep in mind that the exact ratio 
might change if we increase the total sample budget. 

 

11:00 here  



Ok, so far we are done with the point sampling and projection part. Now, in 
order to provide reasonable interaction speed, we have to also exploit the 
image-space coherence to avoid computing a microbuffer at every screen 
pixel. We do so by using an image-space adaptive sampling algorithm, which I 
will briefly explain here. To start, we sample all pixels on the 4x4 grid. 



and then proceed to pixels on the 2x2 grid, such as the red pixel in the center 
here. For each of them, we compute a coherence metric that involves two 
terms. The first is a geometric term, which evaluates geometric changes in the 
local region. The second term is a radiance term, which checks the pixel’s four 
parents computed from the previous level to see if there are significant 
radiance changes, typically due to indirect shadows or glossy reflections. The 
weighted sum of the two terms is compared against a predefined threshold. 



If it’s larger than the threshold, the current pixel must be sampled if it’s not 
already sampled; otherwise, it will be interpolated from the four parent pixels 
using joint bilateral upsampling. So the green dots here indicate pixels that 
must be sampled, and the orange are the ones that will be interpolated. 



We then repeat the process for the 1x1 grid, and the process can continue to 
subpixel level if anti-aliasing is enabled. Although this algorithm sounds similar 
to standard adaptive sampling, it does have a couple of differences. First, 
because the same pixel will be independently checked at each level, it may be 
requested for sampling even if the previous level says it’s ok to interpolate.  



And this property turns out to be important for preserving small geometric 
details. Here is an example where we compare our method with standard 
joint bilateral upsampling that uses a 4x4 regular sampling grid. As you can 
see from the left image, regular sampling leads to aliasing artifacts on the 
chair’s back, because here the feature size is close or smaller than the spacing 
between the grid points. In comparison, our adaptive sampling method on the 
right can faithfully preserve these features. For this example, we have 
modified our algorithm to start from an 8x8, instead of 4x4 grid, and the 
image is captured when the total number of samples is actually less than the 
one on the left. 



The second difference of our algorithm is that it considers both geometric and 
radiance changes. Therefore the samples can quickly snap to regions under 
indirect shadows and glossy reflections, even when the local geometry is flat. 
This property makes our algorithm more efficient than those that only 
consider geometric changes. 

 

 



One purpose of the adaptive sampling is to enable progressive rendering, 
where we gradually reduce the coherence metric threshold, forcing new pixels 
to be sampled each frame. With the progressive rendering mode, the user can 
interrupt and make scene changes interactively; and the efficiency of our 
adaptive sampling allows the image quality to stabilize very quickly before 
fully frame convergence. 



Now I will describe some implementation details. We use NVIDIA CUDA and 
CUDDP library to implement the entire algorithm, and we allow up to 4 point 
lights as the primary lights, because this way we can store the glossy reflected 
lobes with the scene points, to speed up the computation of glossy-glossy 
reflections. For the microbuffer, we quantize the colors and depth values, so 
that each microbuffer is 8KB in size, which can fit comfortably in GPU shared 
memory to allow for fast access. 



The sampling algorithm will launch 512 threads twice, the first time using 
each thread to evaluate cluster importance, and the second time using each 
thread to draw importance samples. The total projected points are four 
thousand. At the end of each frame, we apply a 5x5 bilateral filter on the 
image buffer to help reduce sampling noise, and finally, anti-aliasing can be 
easily enabled by using a supersampled pixel buffer. Again, our adaptive image 
sampling algorithm allows the image quality to stabilize quickly for a 
supersampled buffer. 



Now I will present some results. First, as usual, we need to check the 
rendering quality by comparing our results, shown on the left, with raytraced 
reference in the middle; and we also show the 2 times difference image on 
the right. On close examination, some differences are clearly noticeable, 
which are mainly due to color quantization and the limited resolution of the 
microbuffers. On the other hand, the visual quality is reasonably good given 
the amount of computation that we have reduced. 



In terms of performance, on NVIDIA 480 GTX, a fully rendered 512 square 
image takes 3-4 seconds, that is when every pixel is sampled. Our progressive 
rendering mode can perform at 2-3 frames per second, and for many scenes 
the visual quality is already acceptable under the progressive rendering mode. 



This is a demo we captured in real-time that demonstrates interactive scene 
editing. When objects are moved, we will re-cluster the scene points, and this 
computation time is included in the reported frame rates.  



This is another video clip that shows interactive moving of objects and editing 
of material properties, which can include bumpmaps and spatially varying 
BRDFs. 



This is an example that demonstrates the effect of glossy to glossy reflections. 
This is enabled by making use of the glossy radiance lobes stored at the scene 
points when we project them into the microbuffer. >>>> The effects can be 
seen on the specular highlights of the torus that’s reflected from the teapot. 



Here I am switching between turning on or off the glossy lobes stored at the 
scene point so that you can see the difference it makes. 



We can also enable multi-bounce indirect lighting by treating the scene points 
as shading points and performing the rendering computation in the same way 
as before. Then we use the updated radiance of the scene points to compute 
the final image. By switching between one-bounce and two-bounce indirect 
lighting, we can observe the difference in the brightness and the color 
bleeding effects in this scene. 



This is another scene. Again,  I am switching between one and two bounces of 
indirect lighting to compare the difference. 



This is the final scene that shows the editing in a kitchen scene. Here you can 
see the direct, … indirect… and the global illumination effects. And also the 
effects of editing the color of the wall, and the texture on the floor.  



To summarize, we have presented a new method for final gathering by using 
importance point selection and projection. We have provided a GPU 
implementation that can achieve near-interactive rates under arbitrary scene 
editing and manipulation. 



The main limitations of our work are: first, as we use stochastic sampling, our 
rendering result is prone to sampling noise particularly in progressive 
rendering mode. Also, scenes with high depth complexity may lead to aliasing 
artifacts, especially if a cluster happens to contain multiple layers of geometry. 
This is mainly because we treat the points within the same cluster equally 
with no relative importance, so if a cluster has multiple layers of geometry, it 
can cause visibility aliasing artifacts. But fortunately, this issue usually doesn’t 
happen because the clustering algorithm is quite successful at separating 
different layers. Also, we can always increase the number of clusters or use an 
improved clustering algorithm to reduce this potential artifact. Finally, our 
algorithm is not suitable for very glossy BRDFs, because of the small number 
of samples it uses. We are planning to address this issue by using glossy 
reflectance filtering techniques, or by separating the computation into a near-
field and far-field component and use a different approach to handle each 
component. 




