
In this work, our goal is to achieve global illumination on the GPU using an
importance-driven point projection method.

Global illumination is a classic problem in graphics research, and many recent
techniques exploit the GPU to achieve interactive speed. Among them, virtual
point lights are quite popular because of its simplicity and suitability for
parallel processing.

Here is a simple illustration of the idea. Assume the direct illumination of the
scene can be represented >>> onto a discrete set of points called the VPLs;
then >>> given a shading point p, the contributions of the VPLs will be
accumulated at that point to approximate indirect lighting. The accumulation
is typically referred to as the final gather step.

Most VPL-based techniques are focused on solving three problems. First, the
number of VPLs directly affect the computation cost of the final gather,
therefore there must be an efficient way to either select representative VPLs
or group them into cluster to reduce the computation cost.

Second, the visibility between each VPL and the shading point must be
resolved, which can be done through a variety of techniques, such as shadow
maps, z-buffers, or voxel-based approaches.

Finally, although traditional VPLs are assumed to be diffuse, there are several
recent papers that study how to incorporate glossy VPLs in order to produce
glossy-to-glossy reflection effects.

Among the existing work, the most relevant to ours are two papers published
recently, where they use a single point cloud to represent both illumination
and geometry. The main idea is to rasterize a microbuffer at every shading
point by traversing a hierarchical structure of the points, and the microbuffer
also serves as a z-buffer to resolve visibility.

In this work, our main goal is to study an alternative method, where instead of
building and traversing a point hierarchy, we use importance sampling and
projection of the points to generate microbuffers. The reason we want to
study such a method is because it provides several benefits, including its
simplicity, its capability to directly incorporate glossy VPLs. In addition, it does
not require building a tree of the points on the fly, therefore it can reduce the
computation cost for fully dynamic scenes.

This video demo shows our algorithm captured in real time. The user can
modify any part of the scene, including the objects, light sources, spatially
varying material properties and the viewpoint. Our method can faithfully
capture indirect reflections as well as shadows, such as the area under the
mattress shown here. And this is a Cornell box scene that contains some
glossy objects. As the rendering is updated each frame, some noises are
noticeable, which is due to the random sampling and progressive rendering as
I will explain later. But you can see that overall the rendering quality converges
very quickly within a second.

This is a one slide quick overview of the our algorithm. We first discretize the
scene into a set of uniformly distributed points, which are then partitioned
into clusters; next, for each cluster we use random sampling to evaluate its
importance; finally we draw importance samples from each cluster, and both
the random and importance samples are projected into the microbuffer,
which will be integrated with the BRDF to compute indirect lighting.

4 minutes here.

Now let me explain each step in detail. In the first step, we discretize the
scene geometry into 256K points which we call the scene points. This is done
using a parallel Poisson disk sampler on the surface. For each point >>> we
compute its direct illumination radiance received from the main light sources.
This includes 1 diffuse radiance and up to 4 glossy radiance lobes if the point
is on a glossy material.

Our ultimate goal is >>> project these points into the microbuffer of a shading
pixel.

Here is a visualization of the microbuffer computed at every pixel in this
image. You can see that each microbuffer is essentially a tiny environment
map that stores the incident radiance field at every pixel. It is parameterized
using hemi-octahedral map and stored as 32x32 texture in GPU memory.

Obviously it is not feasible to project all scene points, therefore our goal is to
selectively choose some points for projection using an importance function.
Intuitively, this importance function is defined as the estimated contribution
of every scene point to the microbuffer.

In our case, it is constructed as follows. First, we exploit the spatial coherence
of the scene points by partitioning them into 512 clusters. This is done using a
k-means clustering that considers both the position and normal of points.
Next, we estimate one importance value for each cluster, and points within
the same cluster are treated with equal importance. So essentially this results
in a piecewise constant importance function.

To define the per-cluster importance, we first realize if everything is diffuse,
the importance value of a single point s can be defined as its delta projected
solid angle at the shading pixel p. Notice that unlike bidirectional importance
sampling, this definition does not consider the illumination radiance at the
source points. This is because even if a point has no illumination radiance, it
can still have an importance value because it may block the radiance of other
points therefore casting indirect shadows.

Given the importance value of a single point, the importance of a whole
cluster can be estimated by drawing random samples from the cluster, and
summing up the contribution of each individual sample. In practice, we
usually select 4 random samples per cluster, which we found to be sufficient.
In the diagram shown here, these random samples are indicated by blue dots.
The number of samples can be increased if we need higher accuracy to
estimate the cluster importance.

For glossy surfaces, we can easily modify this equation by adding a BRDF term.
This way, higher importance will be given to scene points that fall along the
reflected direction at the shading pixel p.

We can further include the glossy radiance lobe at the scene points into this
equation, which can then lead to more efficient sampling of glossy-to-glossy
reflection paths.

After we are done evaluating each cluster, our final step is to draw importance
samples by applying the importance function that we have just obtained. This
is achieved by first selecting a cluster based on the importance PDF, then
drawing a uniform random sample within the selected cluster. In the diagram
shown here, the cluster importance is indicated by the darkness of the box,
and the selected samples are indicated as green dots. As you can see, clusters
with higher importance will have proportionally more samples drawn from
them.

Each selected point will be projected into the microbuffer, which is a 32x32
texture parameterized using hemi-octahedral mapping. Every pixel of the
microbuffer stores the radiance as well as the depth value of the closest
projected point. When a new point is added, we first find its texture
coordinate using the mapping formula, which can be found in the paper.

Then, if the point passes a depth test, its color and distance values will
splatted into the microbuffer. Now, the reason for splatting is because the
support size of a sample may be larger than one pixel, therefore we must
calculate an appropriate splat size, which we call the adaptive splats. This is
achieved by estimating a total solid angle represented by the sample, defined
as its delta solid angle divided by the probability of selecting this sample. Then
the total solid angle will be converted to a square splat to be pasted into the
microbuffer.

This slide shows a few examples of the microbuffers we generated. Each row
corresponds to a different scene pixel. The leftmost column is the reference
obtained by projecting all scene points in a brute force way. The rightmost
column shows our results obtained using importance sampling and adaptive
splats. The middle three columns are results obtained by fixed splats of 1, 2 or
3 pixels in size. As you can see, the uniform splat either under fills or overfill
the micorbuffers; while the adaptive splats produce the most faithful results.

10 min

The adaptive splat is more intuitive to explain with this simple example. Here
during the random sampling step, cluster 2 is found to be more important
than cluster 1, therefore more points will be drawn from cluster 2 during the
importance sampling step. And consequently each such point represents a
smaller support size. This is similar to Monte Carlo integration, where the
estimator is inversely proportional to the sample probability.

Also, notice that because the random sampling step already involved some
computation that we can reuse for projection, for efficiency reasons, we
project both the random and importance samples into the microbuffer.

Now, the question is given a fixed total sample budget, such as 8 per thread,
how many do we allocate to each category? Obviously if we allocate >>>> the
budget completely to just one category, the algorithm will degenerate to
uniform random sampling. This will lead to poor efficiency, indicated by the
lack of indirect shadows in the outlined examples here.

Empirically, we have determined that an equal number of allocation to each
category provides the best result. This make sense intuitively, as we need
some samples to help build the importance function, and then some samples
to exploit the importance function. But keep in mind that the exact ratio
might change if we increase the total sample budget.

11:00 here

Ok, so far we are done with the point sampling and projection part. Now, in
order to provide reasonable interaction speed, we have to also exploit the
image-space coherence to avoid computing a microbuffer at every screen
pixel. We do so by using an image-space adaptive sampling algorithm, which I
will briefly explain here. To start, we sample all pixels on the 4x4 grid.

and then proceed to pixels on the 2x2 grid, such as the red pixel in the center
here. For each of them, we compute a coherence metric that involves two
terms. The first is a geometric term, which evaluates geometric changes in the
local region. The second term is a radiance term, which checks the pixel’s four
parents computed from the previous level to see if there are significant
radiance changes, typically due to indirect shadows or glossy reflections. The
weighted sum of the two terms is compared against a predefined threshold.

If it’s larger than the threshold, the current pixel must be sampled if it’s not
already sampled; otherwise, it will be interpolated from the four parent pixels
using joint bilateral upsampling. So the green dots here indicate pixels that
must be sampled, and the orange are the ones that will be interpolated.

We then repeat the process for the 1x1 grid, and the process can continue to
subpixel level if anti-aliasing is enabled. Although this algorithm sounds similar
to standard adaptive sampling, it does have a couple of differences. First,
because the same pixel will be independently checked at each level, it may be
requested for sampling even if the previous level says it’s ok to interpolate.

And this property turns out to be important for preserving small geometric
details. Here is an example where we compare our method with standard
joint bilateral upsampling that uses a 4x4 regular sampling grid. As you can
see from the left image, regular sampling leads to aliasing artifacts on the
chair’s back, because here the feature size is close or smaller than the spacing
between the grid points. In comparison, our adaptive sampling method on the
right can faithfully preserve these features. For this example, we have
modified our algorithm to start from an 8x8, instead of 4x4 grid, and the
image is captured when the total number of samples is actually less than the
one on the left.

The second difference of our algorithm is that it considers both geometric and
radiance changes. Therefore the samples can quickly snap to regions under
indirect shadows and glossy reflections, even when the local geometry is flat.
This property makes our algorithm more efficient than those that only
consider geometric changes.

One purpose of the adaptive sampling is to enable progressive rendering,
where we gradually reduce the coherence metric threshold, forcing new pixels
to be sampled each frame. With the progressive rendering mode, the user can
interrupt and make scene changes interactively; and the efficiency of our
adaptive sampling allows the image quality to stabilize very quickly before
fully frame convergence.

Now I will describe some implementation details. We use NVIDIA CUDA and
CUDDP library to implement the entire algorithm, and we allow up to 4 point
lights as the primary lights, because this way we can store the glossy reflected
lobes with the scene points, to speed up the computation of glossy-glossy
reflections. For the microbuffer, we quantize the colors and depth values, so
that each microbuffer is 8KB in size, which can fit comfortably in GPU shared
memory to allow for fast access.

The sampling algorithm will launch 512 threads twice, the first time using
each thread to evaluate cluster importance, and the second time using each
thread to draw importance samples. The total projected points are four
thousand. At the end of each frame, we apply a 5x5 bilateral filter on the
image buffer to help reduce sampling noise, and finally, anti-aliasing can be
easily enabled by using a supersampled pixel buffer. Again, our adaptive image
sampling algorithm allows the image quality to stabilize quickly for a
supersampled buffer.

Now I will present some results. First, as usual, we need to check the
rendering quality by comparing our results, shown on the left, with raytraced
reference in the middle; and we also show the 2 times difference image on
the right. On close examination, some differences are clearly noticeable,
which are mainly due to color quantization and the limited resolution of the
microbuffers. On the other hand, the visual quality is reasonably good given
the amount of computation that we have reduced.

In terms of performance, on NVIDIA 480 GTX, a fully rendered 512 square
image takes 3-4 seconds, that is when every pixel is sampled. Our progressive
rendering mode can perform at 2-3 frames per second, and for many scenes
the visual quality is already acceptable under the progressive rendering mode.

This is a demo we captured in real-time that demonstrates interactive scene
editing. When objects are moved, we will re-cluster the scene points, and this
computation time is included in the reported frame rates.

This is another video clip that shows interactive moving of objects and editing
of material properties, which can include bumpmaps and spatially varying
BRDFs.

This is an example that demonstrates the effect of glossy to glossy reflections.
This is enabled by making use of the glossy radiance lobes stored at the scene
points when we project them into the microbuffer. >>>> The effects can be
seen on the specular highlights of the torus that’s reflected from the teapot.

Here I am switching between turning on or off the glossy lobes stored at the
scene point so that you can see the difference it makes.

We can also enable multi-bounce indirect lighting by treating the scene points
as shading points and performing the rendering computation in the same way
as before. Then we use the updated radiance of the scene points to compute
the final image. By switching between one-bounce and two-bounce indirect
lighting, we can observe the difference in the brightness and the color
bleeding effects in this scene.

This is another scene. Again, I am switching between one and two bounces of
indirect lighting to compare the difference.

This is the final scene that shows the editing in a kitchen scene. Here you can
see the direct, … indirect… and the global illumination effects. And also the
effects of editing the color of the wall, and the texture on the floor.

To summarize, we have presented a new method for final gathering by using
importance point selection and projection. We have provided a GPU
implementation that can achieve near-interactive rates under arbitrary scene
editing and manipulation.

The main limitations of our work are: first, as we use stochastic sampling, our
rendering result is prone to sampling noise particularly in progressive
rendering mode. Also, scenes with high depth complexity may lead to aliasing
artifacts, especially if a cluster happens to contain multiple layers of geometry.
This is mainly because we treat the points within the same cluster equally
with no relative importance, so if a cluster has multiple layers of geometry, it
can cause visibility aliasing artifacts. But fortunately, this issue usually doesn’t
happen because the clustering algorithm is quite successful at separating
different layers. Also, we can always increase the number of clusters or use an
improved clustering algorithm to reduce this potential artifact. Finally, our
algorithm is not suitable for very glossy BRDFs, because of the small number
of samples it uses. We are planning to address this issue by using glossy
reflectance filtering techniques, or by separating the computation into a near-
field and far-field component and use a different approach to handle each
component.

