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Abstract

We present a practical importance-driven method for GPU-based final gathering. We take as input a point cloud
representing directly illuminated scene geometry,; we then project and splat the points to microbuffers, which store
each shading pixel’s occluded radiance field. We select points for projection based on importance, defined as
each point’s estimated contribution to a shading pixel. For each selected point, we calculate its splat size adap-
tively based on its importance value. The main advantage of our method is that it’s simple and fast, and provides
the capability to incorporate additional importance factors such as glossy reflection paths. We also introduce an
image-space adaptive sampling method, which combines adaptive image subdivision with joint bilateral upsam-
pling to robustly preserve fine details. We have implemented our algorithm on the GPU, providing high-quality

rendering for dynamic scenes at near interactive rates.

1. Introduction

Interactive global illumination in dynamic scenes continues
to present a great challenge in computer graphics. A pop-
ular technique in recent years is to perform final gathering
from many point lights [WFA*05, HPBO7]. The idea is to
sample the scene’s illumination as many virtual point lights
(VPLs) [Kel97], then integrate the contributions from all
VPLs to a shading pixel. One main advantage of this ap-
proach is that it enables gathering of VPLs, which is fast
to compute and suitable for parallel computation. More-
over, [Chr08, REG*(09] adopt a single point cloud to repre-
sent both the illumination and geometry, enabling very fast
visibility calculation using point-based rasterization.

In this paper we present a new method for GPU-based fi-
nal gathering of VPLs. As in [Chr08, REG*09], we adopt a
single point cloud to represent directly illuminated scene ge-
ometry. We project and splat these points into each pixel’s
microbuffer, which stores the occluded incoming radiance
field. Our main goal is to select points for projection based
on importance — their approximated contributions to a shad-
ing pixel. Such an importance-driven method provides fast
convergence speed and is suitable for GPU processing.

We start with random sampling to estimate the importance
function, defined as each scene point’s un-occluded contri-
bution to a given shading pixel. We then draw points accord-
ing to the estimated importance, and splat the selected points
into the pixel’s microbuffer. We compute the splat size adap-
tively using the importance value, providing an estimate of
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the solid angle subtended by the splat. The adaptive splatting
requires no separate hole filling step in the microbufters. To
quickly compute the importance function, we partition the
scene points into spatial clusters. Points within each cluster
are treated uniformly randomly.

Experiments show that our method is simple, fast, and
suitable for fully dynamic scenes. Moreover, our method
allows the incorporation of additional importance factors
such as glossy reflection paths, improving the efficiency of
computing such effects. We implement our algorithms on
modern GPUs, achieving high-quality rendering of dynamic
scenes at 3 ~ 4 seconds per frame (evaluated at every pixel)
for a 512 x 512 image. Figure 1 shows several examples. We
also provide a progressive version of the renderer to enable
fully interactive scene manipulation. The progressive ren-
derer exploits a new image-space adaptive sampling method,
which combines adaptive image subdivision with joint bilat-
eral upsampling to robustly preserve fine details and edges.

2. Related Work

Conventional global illumination methods, such as Monte
Carlo ray tracing and photon mapping, provide high-quality
results offline, but are usually too expensive for interactive
applications. Precomputation based methods exploit offline
computed datasets for fast online rendering, but provide lim-
ited support for dynamic scenes.

Point-based Global Illumination Extensive work has
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Figure 1: Global illumination results using our method. These images are at 5122 resolution and are computed within 3 ~ 4
seconds on an NVIDIA 480 GTX. Shading is evaluated at every pixel. Note the realistic surface reflections and indirect shadows.

shown that point-based representations are very suitable
for global illumination due to their simplicity and intrin-
sic parallelism. Instant radiosity [Kel97] first proposed to
treat indirect illumination as a set of virtual point lights
(VPLs). The contribution of each VPL is computed using
shadow mapping. Imperfect shadow maps [RGK*08] use
a geometry point cloud to compute approximate shadow
maps, significantly speeding up the visibility calculation.
Recently, [NED11] presented screen space compensation to
improve the accuracy in computing near-field VPL contribu-
tions. These methods typically employ up to 1000 VPLs. As
shown by a perceptual study in [KFB10], scenes with glossy
materials often require more than a few thousand VPLs.

A number of recent papers have also studied voxel or
volume based approaches for global illumination. [NPW10]
proposed screen-space voxelization for gathering illumina-
tion from area lights approximated as a set of VPLs; [KD10]
introduced a lattice-based structure to store light propaga-
tion volumes; [THGM11] presented a voxel-based represen-
tation to accelerate visibility evaluation. These methods are
fast and suitable for 3D games, but their renderings can miss
fine details due to the limited resolution of voxels.

Lightcuts [WFA*03] represent indirect illumination as a
hierarchical point cloud, allowing for VPL integration at
sublinear cost. They solve visibility by using ray tracing.
Matrix row-column sampling [HPBO7] clusters VPLs by
sampling their contributions to a subset of shading pixels.
Visibility is solved using shadow mapping. A technique pro-
posed in [HKWBO09] extends VPLs to virtual spherical lights
(VSLs), which are suitable for scenes with glossy materials.
Most recently, [DKH*10] combine global and local lights
to efficiently render high-rank illumination effects. These
methods are accurate, but take a few minutes to render.

By converting polygons to surfels, [Bun05] approximate
ambient occlusion on the GPU using a hierarchy of surfels to
accelerate visibility computation. [Chr08] use a similar rep-
resentation to compute final gathering in production qual-

ity renderings. A point cloud is created to represent directly
illuminated scene geometry, and is hierarchically rasterized
to a shading pixel’s microbuffer. Micro-rendering [REG*09]
uses a similar approach and achieves interactive rates by
exploiting modern GPUs. They also presented importance-
warped microbuffers to efficiently handle glossy BRDFs.

Instead of traversing a point hierarchy, our goal in this
paper is to study an alternative formulation that uses impor-
tance point projection. The main benefits are its simplicity
and improved support for fully dynamic scenes. Moreover,
it allows the incorporation of both diffuse and glossy impor-
tance factors. Section 5 provides a more detailed discussion
between our method with hierarchical point traversal.

GPU-based Photon Mapping Photon mapping [JenO1]
is widely used to simulate multi-bounce indirect light-
ing. Since the first GPU-based photon mapper introduced
in [PDC*03], a number of recent papers have demonstrated
impressive results: [ZHWGO8] presented a GPU-based kd-
tree for interactive photon mapping; [MLO09] introduced a
fast image-space photon mapper for global illumination.
These methods achieve fast computation speed by avoiding
final gathering. Recently [WWZ*09] exploit sparse irradi-
ance samples to reduce final gathering cost, but their compu-
tation of the irradiance samples is purely based on geometry
changes. In contrast, our adaptive image subdivision method
accounts for both geometry and radiance changes.

Importance Sampling reduces stochastic sampling noise by
drawing samples from an importance function that approx-
imates the integrand. An efficient importance function can
be defined as the product of the illumination and BRDFE.
This is called bidirectional importance sampling [BGHO5],
which has been studied by several recent work [CJAMIJOS,
CETC06, CAMO08, WA09]. These methods typically rely on
ray tracing to compute each sample’s visibility and thus re-
main offline; in contrast, we compute importance sampling
on the GPU to allow for interactive rendering.

Caching and Interpolation Indirect lighting is typically
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Figure 2: (a) for diffuse surfaces, the importance of a point
s is defined as its projected solid angle; (b) for glossy sur-
faces, we additionally include the BRDF into the importance
value; (c) cluster importance is estimated by random sam-
pling within the cluster.

smooth, making it suitable for caching or adaptive sam-
pling. [WRC88] progressively cache irradiance samples and
reuse them during the computation. [TPWGO02] proposed an
object-space caching method suitable for dynamic scenes,
but require parameterized objects. To reconstruct an image
from sparse samples, joint bilateral upsampling [SGNS07]
provides nonlinear interpolation that prevents blurring from
crossing feature edges. However, a regular grid sampling
pattern can lead to loss of fine details around small geo-
metric features. Our method combines joint bilateral upsam-
pling with adaptive image subdivision, which can robustly
preserve fine details and features, as shown in Figure 10.

3. Algorithms
3.1. Overview

Point Representation. We use S to denote a point cloud
sampled from a scene with directly illuminated radiance.
Each point is associated with a position, normal, delta sur-
face area, and radiance. The points can be generated using
a variety of methods, such as instant radiosity, surface sam-
pling, micropolygon subdivision, or photon mapping. In our
case, we use Poisson disk surface sampling in [BWWM10]
to generate points on scene surfaces. Due to the uniform dis-
tribution, all points are assigned the same delta surface area.
Each point can emit diffuse as well as glossy radiance.

Microbuffers. Our goal is to project the points to each
pixel’s microbuffer, which stores the depth and color of
the closest projected point. The microbuffer is essentially
a small environment map observed at a pixel represent-
ing its incoming radiance field. Since we only need to
represent the upper hemisphere, we use a hemi-octahedral
map [WNLHO0G6] to store the buffer as a 3232 texture. Each
pixel in the map is associated with a direction and a delta
solid angle, and all pixels together cover a 27 solid angle.

Stochastic Sampling. To obtain the microbuffer, we could
project all points. But this would be too slow as there are
tens of thousands of points. It is also not necessary as the
microbuffer size is much smaller than the total number of
points. To improve efficiency, we draw samples stochasti-
cally from S. A naive approach is to pick a point from S uni-
formly randomly, thus every point has an equal probability
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p= ﬁ to be selected (|S| is the point set size). But clearly,
a more efficient way is to importance sample the points. In
this case, every point is assigned an importance value, de-
fined as its estimated contribution to a given shading pixel.
This results in an importance function, which we can then
use to draw samples from S. Specifically, we define impor-
tance as a point’s projected solid angle to a shading pixel.
Intuitively, this ensures that points subtending large solid an-
gles are more likely to be selected for projection, while those
subtending small solid angles are selected less frequently.

3.2. Importance-Driven Point Projection

Clustering Points. Since the importance function has to be
evaluated on the fly, computing it for all points is impracti-
cal. Instead, we partition the points into clusters, and assign a
single importance value per cluster. Points within each clus-
ter are treated with equal importance. This essentially ap-
proximates the importance function as piecewise constants,
greatly reducing the evaluation and sampling cost. This ap-
proach is similar to [WA09], where they cluster lights based
on the points’ diffuse radiance energy. Unlike them, we do
not consider the points’ radiance values during clustering,
because our points represent both illumination and geome-
try, thus a point that carries no emitted radiance may still
be important as it can occlude other points. The partitioning
of points can use k-means or any existing spatial clustering
algorithm. By default we create 512 clusters. Once created,
the clusters are treated independently.

Evaluating Per-Cluster Importance. Next, we need to es-
timate the importance of each cluster. We do so by drawing
N,,q random points from each cluster, and computing the
sum of their individual importance, defined as the projected
solid angle of the point:

B Z max(cos6p,0) - | cos Bs|

oL s—pP?

where p is the a shading pixel being considered, py is the
estimated importance for cluster Cy, s is a random point se-
lected from Cy, AAs is the point’s delta surface area. See Fig-
ure 2(a)(c) for illustrations. Note that the absolute value of
cos O; is taken because a point facing away from p still con-
tributes importance, as it can cast indirect shadows. We typ-
ically use N,,; = 4 random points per cluster, which works
well in practice, and is fast to compute.

AAs (€))

Importance Sampling. Once we have the per-cluster im-
portance py, we normalize it to a PDF, and further convert it
to a CDF. To draw a sample, we generate a uniform random
number, and use binary search to find where it falls in the
CDF. This selects a cluster. Finally we pick a random point
from that cluster as a final sample, as every point within the
cluster is treated equally.

Projection and Adaptive Splat Size. Once a point is se-
lected, we project it to the microbuffer, and splat its color
if the center of the splat succeeds a depth test. To project,
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Figure 3: Algorithm overview. Scene surfaces are sampled as many points, which are then clustered using k-means. At a
shading pixel p, we estimate each cluster’s importance by drawing random points (blue dots) from the cluster; we then treat the
importance as a PDF to draw importance samples (green dots). Both random and importance samples are projected into the
microbuffer (yellow diamond). The shade of each box indicates cluster importance.

we map the line-of-sight direction (s — p) to the microbuffer
using hemi-octahedral mapping. Specifically, we transform
(s — p) to the local coordinates at the shading pixel. Denote
this transformed direction ®. We then compute:

/ /
, ® { f= =0 .;Jru) Z

0 = 5 q /
|@.x| +|®.y| + |o.z] fy=1=0r-0.
@3]
The resulting [y, #y] € [0,1]? are the normalized 2D coordi-

nates corresponding to a pixel location in the microbuffer.

The splat size (the number of microbuffer pixels covered
by the projection) has to be carefully computed in order to
minimize holes. Assume that a sample s comes from clus-
ter Cy: since an expected number of Ny - p; samples will be
drawn from this cluster, each sample shares ﬁ of the to-
tal surface area of the cluster. Therefore, we can estimate the
solid angle represented by s as:

_ Gl -MA, Jcosty]

Qg = —_— 3
s Ny-pe  |s—p)? 3

We further divide Qs by the delta solid angle that the mi-
crobuffer pixel at [ty,#y] represents, and the result gives the
total number of pixels covered by the splat. We clamp the
number to 1 if it is less than 1. Finally, the splat color and
depth value are both written to the microbuffer in a square
region covered by splat size.

Discussion. Note that the cluster importance p; appears in
the denominator of Eq. 3. This make sense intuitively, since
a cluster with small importance is less likely to be sampled,
thus any sample drawn from it must represent a larger sup-
port area. After projection, however, the solid angles rep-
resented by all samples should be roughly equal. Refer to
Figure 4 for illustrations. Note that a pixel’s nearby clus-
ters are likely to obtain higher importance values, thus more
samples, whether they carry illumination radiance or cast in-
direct shadows, will be drawn from them.

Glossy Importance. Because we estimate importance us-
ing point sampling, it is possible to include other factors. For
example, for a glossy shading point, we should give higher
importance to clusters that fall close to it reflection direc-
tions. This can be achieved by adding a BRDF term f; to

.:'. ‘ Random Sampling
.

®e
o« Cluster 1

Importance Sampling

Cluster 1

Cluster 2 It

‘~..I‘ s
microbuﬂer; | ; microbuffer; | ;
Z. Z

Figure 4: At random sampling, cluster 1 is found to have
smaller importance than cluster 2, thus is sampled less fre-
quently during importance sampling. A sample drawn from
cluster 1 will represent a larger support area, but the project
solid angle will be similar to a sample drawn from cluster 2.

Eq. 1, which now becomes:

max(cos0p,0) - |cos 6.
=y n(€0509.0) - costy]

s—pP fr(s = p,@0)AAs  (4)
S

Refer to Figure 2(b). In addition, we can further multiply it
by the strength of the glossy radiance at the source point s.
This allows us to efficiently include glossy-glossy reflection
paths. Note, however, as we use a small set of random points
per cluster to sample the importance, this approach is only
suitable for moderately glossy BRDFs, such as Phong with
exponent less than 50. Highly glossy BRDFs require proper
filtering to avoid aliasing, or should ideally be handled with
an entirely different approach.

Summary. Figure 3 summarizes the steps of our algorithm.
For efficiency, the points drawn from the random sampling
step and importance sampling step are both projected into
the microbuffer. This makes better use of the computation
already required to evaluate the random samples. The splat
size for a random point can be computed from Eq. 3 accord-
ingly, with p; equal to the inverse of the number of clusters.

In practice, we are typically given a fixed number of total
sample budget. Thus we need to decide how many of them
should be allocated to the random sampling step (which eval-
uates the importance function) vs. the subsequent impor-
tance sampling step. Clearly an imbalanced allocation to ei-
ther will cause the method to degrade to random sampling.
We have found through experiments that an equal alloca-
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Figure 5: Adaptive sampling. Green color indicates sampled
pixels; orange color indicates interpolated pixels.

tion of samples for both achieves the best rendering result in
practice. Figure 7 provides a validation.

3.3. Image-Space Adaptive Sampling

Even though importance point projection is efficient, com-
puting it for every shading pixel is still quite expensive, es-
pecially for high-resolution, anti-aliased (AA) images. Cur-
rently we can render a 5122 image at every pixel (no AA)
in 3 ~ 4 seconds. To provide interactive rendering feedback,
we need to further reduce the spatial sampling cost while the
user manipulates the scene. This can be done by perform-
ing final gathering only at a subset of pixels. The sparsely
sampled pixels are then used to reconstruct the other pixels
using joint bilateral upsampling [SGNS07]. To select sample
pixels, a standard way is to use a regular grid, such as 4x4.
While this works well for simple scenes, it is often neces-
sary to perform further sampling around edges and places
with fine geometric details. See Figure 10 for an example.

We propose to compute samples adaptively. To begin, we
rasterize a G-buffer, storing each pixel’s position p; and nor-
mal n;. We then use a top-down subdivision, starting with
pixels on an initial 4 x4 sampling grid. After these pixels are
shaded, we examine pixels on the 2x2 grid. For each pixel
on this grid, we compute the following coherence metric:

Ipi — P
i ( an

3= 2] ) 44 o (0;) Lol
ik

where pc and n. are the position and normal of the current
pixel, i loops over its four neighbor pixels on the grid, and
d is the length of the scene’s bounding box diagonal. Here
Jj and k are pairs of two out of the four parent pixels on the
4x4 grid, and L, is the radiance computed at each parents
pixel. The first term is inspired by [WWZ*09] and evaluates
local geometric changes; the second term evaluates radiance
changes. A weighs the relative importance of the two. We
found A = 8 to work well practice. Refer to Figure 5 for
an illustration of the samples. Note that including the radi-
ance term L, is important for the cases where high radiance
changes are present on surfaces with low geometric changes,
such as glossy highlights on a plane.

If the coherence metric is larger than a given threshold
€ = 0.3, the current pixel must be sampled; otherwise it
will be interpolated from the four parents. We perform this
checking independently for every pixel, except for those that
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are already sampled in previous passes. We then use a paral-
lel list compaction to collect all pixels that require sampling
at the current subdivision level, and launch GPU threads to
shade these pixels. Next, we launch GPU threads again to
interpolate the un-sampled pixels, using joint bilateral up-
sampling [SGNSO07].

We repeat the process for grid size 1x1. When anti-
aliasing is enabled, it is further repeated until a desired sub-
pixel level is reached. The error threshold € is scaled by 2
every time we go down a level. Note that because the pix-
els are checked independently in each pass, even if a pixel
is interpolated at a previous pass, it can still be requested
for sampling at a later pass. This is important for robustly
preserving edges and small details not discovered in the pre-
vious passes. Figure 9 shows the adaptive samples selected
during convergence. Our results show that the samples can
quickly capture edges, as well as areas with strong glossy
reflections and under indirect shadows.

4. Implementation Details

We implement our algorithms on the GPU using NVIDIA
CUDA 3.2. For random numbers, we precompute a texture
storing 4K x4K random numbers and reuse them on the fly.

Scene Points. For all scenes we generated 256K points
uniformly distributed on the scene surfaces. The number of
points is sufficient for our test cases. We have also tried 1M
points, which did not produce any observable improvement
in the rendering quality. We use a GPU-based Poisson disk
sampling algorithm described by [BWWMI10] to generate
these points. For each point we store its position as 3 floats,
and its normal, diffuse color, specular color, and Phong ex-
ponent as bytes. We also store its triangle ID and barycen-
tric coordinates, which are used to update the points upon
scene manipulation. Unless objects undergo significant de-
formation, we do not need to re-generate points; instead, we
simply update their locations using their barycentric coordi-
nates.

Materials. For simplicity we currently only support diffuse
and Phong BRDFs. It is possible to include other BRDFs,
as we make no assumption about the specific BRDF model.
We also support bump maps and spatially varying BRDF pa-
rameters defined using textures. We do, however, restrict the
glossiness of the BRDFs to be generally below 50, as highly
glossy BRDFs cause artifacts in the sampling process and
are better handled using a ray tracing based approach.

Primary Lights. We allow multiple point lights as the pri-
mary light sources. For each light we rasterize a 6x5122
cube shadow map and use it to compute shadowed direct
lighting at both the scene points and the shading pixels.

For other types of light sources, such as area lights and
environment maps, we can perform stochastic sampling on
the light source to estimate the direct lighting radiance at the
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Figure 6: The block of images on the left: comparisons of microbuffers generated at 5 selected pixels using importance-driven
vs. random projection, both with 3K projected points; on the right: comparisons of microbuffers generated with our adaptive
splats, non-adaptive (uniform) splats of 1, 2, and 3 pixels, and a brute-force reference solution.

scene points. But the bigger challenge with them is to evalu-
ate direct lighting at the shading pixels. Various soft shadow-
ing techniques are available, and it remains our future work
to include them into our implementation.

Clustering Scene Points. As described in Section 3.2, we
partition the scene points into 512 spatial clusters in order to
estimate the importance PDF. To do so, we apply straightfor-
ward k-means clustering with a fixed number of 8 iterations.
The distance between two points is calculated using a met-
ric defined in [WWZ*09], which considers both the position
and normal of a point. This metric is inspired by irradiance
caching [WRC88]. With 256K scene points and 512 clusters,
the k-means can quickly converge on the GPU in a few mil-
liseconds. Thus its overall cost is very small. Note that other
spatial clustering schemes can be adopted as well.

Microbuffers. We use 32x32 microbuffers, and compute
each microbuffer in a single CUDA block. This allows the
entire microbuffer to be stored in shared memory, providing
fast access speed. The microbuffer itself requires 3 bytes for
storing each of the diffuse and glossy incoming radiance, and
1 ushort for storing depth. The total is 8KB per microbuffer.

The reason to separate glossy from diffuse component
is for better image-space interpolation in textured areas. In
those areas, direct color interpolation of pixels will lead to
loss of texture details. Instead, we interpolate the diffuse and
glossy radiance separately, and multiply them with the tex-
tured reflectance values to produce the final color. Note that
the diffuse and glossy components can use different textures.

To estimate cluster importance, we launch 512 threads,
corresponding to 512 clusters. Each thread k independently
draws 4 random points from its cluster C; and evaluates py
(Eq.4). These points are immediately projected to the mi-
crobuffer. Then a parallel prefix sum is used to build the
CDF. Following this, each thread proceeds to draws 4 im-
portance samples using the CDF, and projects them to the
microbuffer using splat sizes estimated via Eq. 3. So in total
we project (4+4)x512=4K points to the microbuffer. Every
time a point is projected to the microbuffer, we use at om—
icMin to update the color and depth values, ensuring cor-
rectness upon concurrent writes. Finally we multiply each
microbuffer pixel with the BRDF value, and perform a par-
allel reduction to return the total reflected color.

For robustness when calculating delta solid angles, we use
an approximated disk-to-point solid angle formula:

2TAs cos Os

Q= —""—->
* 7 As+2ns—p|?

(5)
This prevents Qs from becoming arbitrarily large when p
and s are very close to each other.

Glossy-Glossy Reflections. Since our approach is based
on point sampling, we can achieve glossy-glossy reflections
by performing a direct lighting calculation at a scene point
when it is requested for projection. Clearly the computation
cost depends on the number of primary lights. In practice, we
assume that there are no more than 4 primary light sources
and hence we can store the glossy reflected lobes together
with the scene points. To do so, we run a separate pass that
calculates shadowed direct lighting on the scene points, in-
cluding a diffuse radiance and up to 4 glossy reflected lobes.
For each lobe we store its center direction and the Phong
exponent. These will then be used during point projections.

Multi-Bounce Indirect Lighting. We enable multi-bounce
indirect lighting by treating the scene points as shading
points, and use the same microbuffer algorithm to update
the diffuse radiance at each point. This allows us to in-
clude an additional bounce of indirect illumination in the
final shading. Note, however, we do not update the glossy
reflection lobes at the scene points, as doing so would
cause the number of glossy lobes to increase exponen-
tially. Instead, we only update the diffuse radiance of the
scene points. Nonetheless, this approach provides satisfac-
tory multi-bounce illumination results in most cases.

Progressive Rendering. Using image-space adaptive sam-
pling, we can easily enable progressive rendering to improve
the user interaction speed. During adaptive sampling, the
user can manipulate any part of the scene, and the current
adaptive sampling step will be interrupted if the user starts to
edit the scene. As soon as the user stops moving, the program
will continue to compute the remaining pixels, allowing the
full indirect light buffer to be filled in over time. Typically
the rendering quality converges in a second, while full frame
rendering (i.e. evaluated at every pixel) takes 3 ~ 4 seconds.

When higher quality rendering is desired, we enable
super-sampling to provide anti-aliasing. In this case, the
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(a) rnd:8, imp:0

(b) rnd:6, imp:2 (c) rnd:4, imp:4 (d) rnd:2, imp:6 (e) rnd:0, imp:8 (f) reference

Figure 7: Comparing allocation of samples for the initial random sampling (rnd) vs. the subsequent importance sampling (imp)
step. Here the total sample budget is 8 per thread. The renderings only show indirect lighting component. We choose an equal
allocation of both as it typically provides the best result, shown in (c). An imbalanced allocation can degenerate the algorithm
towards random sampling, reducing the sampling efficiency and rendering quality. In particular, (a) is equivalent to stratified
uniform random sampling with 512 stratas, and (e) is equivalent to un-stratified uniform random sampling.

(a) Ours (b) Reference (c) 2x diff (d) Ours (f) 2x diff

Figure 8: Comparison of indirect lighting result computed using our method vs. a ray traced reference. For each example we
show a 2x difference image to highlight the places of errors.

(e) Reference

sampling will proceed to subpixel level. Due to adaptive
sampling, the most important pixels (usually those around
edges, indirect shadows, and glossy surfaces) are selected
and shaded first. Thus the rendering usually converges
quickly. This allows the rendering cost to grow sublinearly
with respect to the total number of super-sampled pixels. To
keep track of the status of each pixel, the alpha component
is set to 1 for sampled pixels and O for interpolated pixels.
The program will then overwrite interpolated pixels in sub-
sequent sampling passes.

Post-process Filter. We apply a 5x5 joint bilateral filter
on the computed indirect lighting buffer as a post-process
step. This generally reduces stochastic sampling noise and
works very effectively for diffuse scenes. For scenes with
many glossy objects, the sampling noise is usually more pro-
nounced, but we cannot use a larger filter to attenuate noise
because that would blur out reflection details. Instead, we
rely on anti-aliasing to provide a higher quality image.

5. Results and Discussions

Our results are tested on a PC with Intel Core 17-920 CPU
and NVIDIA 480 GTX graphics card. Unless specified oth-
erwise, all images and videos are captured at a default res-
olution of 512x512 with no anti-aliasing. For high-quality
rendering, we turn on 2xXAA, which provides nicer quality
but at slower performance.

Performance. By default we turn on progressive rendering
mode to provide better user interaction. The rendering speed
is about 2~3 fps, and the full frame rendering (i.e. all pixels
are shaded, none interpolated) is achieved in 3~4 seconds.
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Figure 1 shows three example images. Note the realistic sur-
face reflections and the indirect shadows.

With 2x AA, the frame rate drops to 1 fps. Note that due to
our adaptive sampling, the image quality typically converges
in a few seconds, and hence full frame rendering is usually
not necessary to obtain a high-quality rendering. Since we
use point-based illumination, the rendering performance is
generally insensitive to the scene complexity, although the
indirect shadows can take longer to converge in scenes with
high depth complexity.

Microbuffers. We first examine the quality of the mi-
crobuffers generated using our method. Our reference is a
brute force solution that projects all scene points into the mi-
crobuffer. In Figure 6 left, we show 5 selected pixels from the
bedroom scene. For each point, we compare our importance-
driven point projection vs. uniform random point projection.
Both are computed by drawing 3K samples from the scene
points. Comparison results are shown in the middle image.
Note how the importance-driven method better matches the
reference, while the random method leaves many gaps that
need to be filled with large adaptive splats.

To see how effective the adaptive splats are, in Figure 6
right, we compare microbuffers generated using adaptive
splats vs. uniform splats of 1, 2, and 3 pixels. Small uniform
splats (e.g. 1) do not cover the microbuffers well, leaving
many holes; large uniform splats (e.g. 3) overfill the buffer,
causing one splat to spill to adjacent pixels. In contrast, adap-
tive splats can effectively overcome these issues.

In Figure 7 we examine the rendering quality when al-
locating different number of samples for the initial random
sampling step vs. the subsequent importance sampling step.
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Figure 9: Image adaptive samples selected at different time stamps as the rendering progresses. Note how the samples quickly
capture areas of depth discontinuities and radiance changes (such as indirect shadows and glossy highlights).

(a) Regular 4 x4 (16,384 samples) (b) Reconstructed image

(c) Adaptive (15,182 samples)

(d) Reconstructed image

Figure 10: This example compares reconstruction quality using a regular 4 x4 sampling vs. our adaptive sampling method. (a)
shows the regular sampling grid which contains 16,384 samples; (c) shows adaptive sampling grid with 15,800 samples. (b)
and (d) show the reconstructed images, both interpolated using joint bilateral upsampling. Clearly adaptive sampling is more
effective at capturing detailed geometric features in this scene, such as the stripes on the chairs. In contrast, regular sampling
produces noticeable sampling artifacts, and leads to temporal aliasing when the view or lighting changes.

We set the total sample budget to 8 per thread. If too many
samples are devoted to the initial sampling, there won’t be
enough samples to exploit the evaluated importance func-
tion; on the other hand, if too few samples are devoted to
the initial sampling, the accuracy of the importance function
will degrade. We have found that an equal number of both
achieves the best result. Note that (a) and (e) are both equiv-
alent to uniform random sampling (one stratified and one
un-stratified). This is because (a) draws only random sam-
ples per-cluster, and (e) constructs an importance function
that’s constant everywhere. Also note that as all samples are
projected into the microbuffer, the computation cost remains
about the same as long as the total sample budget is the same.

Validation. To verify the rendering quality, we used ray
tracing instead of microbuffers to generate reference im-
ages of two scenes. Results are shown in Figure 8. The bed-
room scene contains only diffuse objects, while the Cornell
box scene contains both diffuse and glossy objects. We only
show indirect lighting. Note that our result looks qualita-
tively similar to the reference. Some differences are observ-
able, mainly in the tone of the color and the indirect shadows
around edges. The color difference is primarily caused by
color quantization (i.e. 8-bit), and the indirect shadow dif-
ference is primarily caused by the limited resolution of the
microbuffers. We also show a 2x difference image on the
right, which highlights the places of errors.

Image adaptive sampling. Our adaptive sampling algo-
rithm considers both local geometric changes and luminance

Figure 11: Comparisons of enabling vs. disabling glossy-
glossy reflections. The inlets show zoomed in views of two
spots with self-reflections on the teapot.

changes, thus it efficiently budgets samples in areas of sharp
features or strong radiance changes. In Figure 9 we show
the adaptive sample points selected at different time stamps
during the rendering. Note how the samples quickly capture
depth discontinuities as well as indirect shadows and glossy
reflections, making the sampling process more efficient.

Figure 10 shows an example that compares our adaptive
sampling method with a straightforward regular 4 x4 sample
pattern as used in in [SGNS07, REG*09]. For this example,
we set the adaptive sampler to start from an 8x 8 initial grid
and progressively refines using the algorithm described in
Section 3.3. Both images (indirect lighting only) are recon-
structed with joint bilateral upsampling. We found that while
a regular sample pattern works well for smooth geometry, it
often causes aliasing artifacts when fine geometric details
are present, such as the stripes on the chair models. These
artifacts become more pronounced when the view or light-
ing changes. In contrast, our adaptive sampling method can
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Figure 12: The dining room scene and the Cornell box scene. Here we compare global illumination with one and two bounces
of indirect lighting. Note how the additional bounce adds more color bleeding and brightens up the indirect shadowed regions.

Figure 14: This example shows run-time scene manipula-
tion, including object, lighting, and material changes.

quickly snap to areas that demand more sampling, thus is
more efficient at the same or even less number of samples.

Multi-bounce Indirect Lighting. We enable multiple dif-
fuse bounces by applying the same final gathering algorithm
on the scene points. The final bounce of reflection (at shad-
ing pixels) is still glossy. It generally takes several seconds
to update the diffuse radiance at all scene points. Once it’s
done, the user can change viewpoints at will, but moving the
light source, objects, or changing material parameters will
incur a new round of scene points update. Figure 12 shows
our results for the dining room scene and the Cornell box
scene. Note how the additional bounce adds more color sat-
uration, and brightens up the indirect shadowed regions.

Glossy-glossy Reflections. As we allow the scene points to
carry glossy reflected lobes, we enable glossy-glossy reflec-
tion effects. Figure 11 shows a comparison between render-
ings with the glossy lobes at the scene points enabled vs. dis-
abled. Note the differences in the glossy highlights reflected
from the teapot, especially the self-reflections.

Scene Manipulation. Our algorithm supports dynamic
BRDF editing with bump maps and spatially varying BRDF
parameters defined by textures. Figure 13 shows the teapot-
torus scene edited in real-time with several different ma-
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terials. We also support online manipulation of scene ob-
jects. Upon manipulation, the direct lighting radiance at ev-
ery scene point will be updated, and we re-cluster the points.
These steps take less than 12ms. Figure 14 shows two snap-
shots captured during an editing session where the objects,
primary light, and materials have all been edited.

Comparisons to [Chr08] and [REG*09]. Our method dif-
fers from [Chr08] and [REG*09] mainly in that we replace
the hierarchical point traversal with importance point sam-
pling and projection, which provides compatible efficiency
but is conceptually simpler and easier to implement on the
GPU. Using point sampling also makes it possible to account
for glossy source radiance at the scene points. In addition, as
shown in Figure 10, our adaptive image sampling algorithm
is better suited for scenes with fine geometric details.

On the other hand, our method is prone to stochastic sam-
pling noise, which is not an issue with hierarchical point
traversal. This may cause severe artifacts when the scene’s
depth complexity increases, particularly if a cluster contains
points from multiple layers of geometry. In this case we may
need to increase the number of clusters, or improve the clus-
tering algorithm to avoid creating clusters that contain com-
plex geometry. Also, we have not yet included the BRDF-
warped microbuffers [REG*09], which can more efficiently
handle glossy reflections at the shading points. Finally, we
currently do not employ a separate raytracing pass, as sug-
gested in [REG*09], to compensate for near-field contribu-
tions. As seen from Figure 7, our sampling method is fairly
efficient at capturing near-field illumination and occlusions.
Nonetheless, using raytracing compensation can further im-
prove the efficiency of our algorithm.

6. Limitations and Future Work

To summarize, we have presented an efficient method using
importance point projection for GPU-based final gathering.
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Our method provides a viable alternative to existing work.
Our method is not real-time yet, so it is not immediately
applicable to 3D games. However, it serves as a practical
tool for design applications, as it provides realistic rendering
feedbacks in just a few seconds.

Our work has several limitations that remain to be ad-
dressed in future work. First, like other point-based meth-
ods, when dealing with highly glossy materials, the num-
ber of scene points can quickly become a limiting factor
that leads to reflection aliasing artifacts. We plan to incor-
porate techniques such as [DKH*10], which combine local
and global virtual lights to more efficiently handle glossy
reflections. Second, scenes with complex geometry will re-
duce the sampling efficiency of our algorithm, leading to
spatial and temporal aliasing artifacts. We plan to address
this issue by separating the illumination into near-field and
far-field components, and use different approaches to handle
each component. Finally, we plan to study how importance
point projection can be used to simulate other effects such as
translucency, participating media, and hair rendering.
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