Eurographics Symposium on Rendering 2011
Ravi Ramamoorthi and Erik Reinhard
(Guest Editors)

Volume 30 (2011), Number 4

A Ray Tracing Approach to Diffusion Curves

John C. Bowers Jonathan Leahey Rui Wang

University of Massachusetts Amherst

Abstract

Diffusion curves [OBW*08] provide a flexible tool to create smooth-shaded images from curves defined with
colors. The resulting image is typically computed by solving a Poisson equation that diffuses the curve colors to
the interior of the image. In this paper we present a new method for solving diffusion curves by using ray tracing.
Our approach is analogous to final gathering in global illumination, where the curves define source radiance
whose visible contribution will be integrated at a shading pixel to produce a color using stochastic ray tracing.
Compared to previous work, the main benefit of our method is that it provides artists with extended flexibility in
achieving desired image effects. Specifically, we introduce generalized curve colors called shaders that allow for
the seamless integration of diffusion curves with classic 2D graphics including vector graphics (e.g. gradient fills)
and raster graphics (e.g. patterns and textures). We also introduce several extended curve attributes to customize
the contribution of each curve. In addition, our method allows any pixel in the image to be independently evaluated,
without having to solve the entire image globally (as required by a Poisson-based approach). Finally, we present
a GPU-based implementation that generates solution images at interactive rates, enabling dynamic curve editing.

Results show that our method can easily produce a variety of desirable image effects.

1. Introduction

Vector graphics, in which images are represented by geo-
metric elements such as curves, continues to serve as a pow-
erful tool for creating resolution-independent images and
drawings. Such representations are compact, scalable, and
easy to edit and animate. The diffusion curve, as introduced
by [OBW™08], is a new vector-based representation that en-
ables the easy creation of smooth-shaded images. A diffu-
sion curve is defined with different colors on each side of the
curve. Given a set of such curves, an image can be computed
by solving a Poisson equation that smoothly diffuses the col-
ors from the curves to the image interior. As diffusion curves
allow for arbitrarily shaped curves, including open ones,
they provide a convenient and intuitive way to generate a va-
riety of shaded images. Since the introduction of the original
diffusion curves, several papers have significantly improved
this technique towards higher performance [JCW(09a], more
expressive control [BEDT10], and additional applications
domains [JCW09b, WOBT09, TSNI10,JCW11].

Despite these advances, the main technique for constructing
an image from diffusion curves remains solving a Poisson
equation. This solution imposes several limitations. First,
it requires rasterizing the analytic curves into a discrete

submitted to Eurographics Symposium on Rendering (2011)

pixel buffer as input, which is prone to aliasing and nu-
merical computation artifacts [JCW09a]. Second, the default
Poisson diffusion process requires the whole image to be
solved globally, and provides little flexibility in controlling
how the resulting image is generated. Although the diffu-
sion constraints technique proposed by [BEDT10] can be
used to enable flexible control such as diffusion barriers and
anisotropic diffusion, it is still expensive to compute and
does not yet run at interactive speed. Third, and most im-
portantly, as the diffusion process requires a gradient vector
field which is fundamentally different from the way classic
vector graphics is represented, enabling diffusion curves of-
ten means a substitute, instead of a complement, to exist-
ing tools. As a result, users have to redefine certain familiar
operations in a less convenient way. One example is the ra-
dial gradient fill, which is a frequently used operation but
rather cumbersome to define and manipulate using diffusion
curves. While it’s possible to combine different techniques
using image layer compositing, doing so often introduces
unnecessary complexity, making it difficult to achieve de-
sired image effects. Thus the lack of seamless integration
between classic vector graphics and diffusion curves has be-
come an obstacle for reusing existing content and skills that
users are already familiar with.

2 J. C. Bowers & J. Leahey & R. Wang / A Ray Tracing Approach to Diffusion Curves

Figure 1: A depiction of a barn owl. The curves are shown
in the inlay on the left. Both images are computed using our
method. Left: curves are assigned only colors as in standard
diffusion curves; right: curves are defined with radial gradi-
ent fills and textures.

In this paper we present a new method for solving diffusion
curves using raytracing. We formulate the problem into an
alternative form equivalent to final gathering in global illu-
mination. Specifically, the curves define source colors whose
contributions (accounting for occlusion) will be integrated at
a shading pixel to produce a smoothly interpolated color. The
integration is achieved using stochastic raytracing performed
on the GPU. By leveraging a uniform grid acceleration struc-
ture and a two-stage image adaptive sampling algorithm, we
achieve interactive speed for generating solution images of
complex diffusion curves. This enables the user to dynami-
cally create and edit curves on the fly.

Compared to existing solutions, the main benefit of our
method is that it provides artists with extended flexibility in
achieving desired image effects. Specifically, building upon
the raytracing solution, we introduce generalized curve col-
ors called shaders that can seamlessly integrate diffusion
curves with classic 2D graphics including both vector graph-
ics (e.g. gradient fills) and raster graphics (e.g. patterns and
textures). This is achieved by associating each curve with
a user specified shader that defines the shading contribu-
tion when a ray intersects that curve. We further extend the
curves with additional attributes such as custom weighting
function and a transparency factor, providing flexible con-
trol of each curve’s contribution. In addition, our method al-
lows any pixel in the image to be independently evaluated,
without having to solve the entire image at once, as required
by a Poisson-based approach. This enables local and output-
driven image computation, suitable for view-dependent ren-
dering. Finally, using raytracing allows curves to be repre-
sented algebraically, eliminating the numerical computation
artifacts caused by curve rasterization in a diffusion based
approach. It can also easily achieve anti-aliasing in the final
generated image by using spatial stochastic sampling.

In its base form, our idea is closely related to coordinates im-
age cloning [FHL*09], which replaces the diffusion process
within a curved boundary by a smooth interpolation using
the mean-value coordinates [Flo03]. However, unlike them,
our method explicitly considers the visibility of a curve to

a shading pixel, which is crucial for constructing complex
diffusion curve images but negligible for the purpose of im-
age cloning. Moreover, our curves are defined with custom
shaders and attributes, thus the contribution of each curve
must be numerically integrated and cannot use the analytic
mean-value coordinates.

As an alternative to raytracing, one could also use rasteriza-
tion to compute interpolated colors. Such a method has been
adopted by the recent work of diffusion surfaces [TSNI10],
which extends diffusion curves to 3D to generate solid tex-
tures. Theoretically, both raytracing and rasterization would
work, and the choice goes back to the classic debate between
them. However, in our case, we have found raytracing to
provide several clear benefits. First, it enables the definition
of arbitrary curve attributes including transparency, which
would be harder to achieve using rasterization. Second, our
experiments show that using raytracing for diffusion curves
is in fact faster than rasterization, mainly because the num-
ber of curve elements in a complex image is typically larger
than the number of sample rays required to integrate colors.
This causes rasterization to under-utilize the GPU, slowing
down performance. Finally, rasterization is prone to aliasing
artifacts, which often have to be solved via supersampling.
In contrast, raytracing can efficiently achieve anti-aliasing
by using stochastic sampling.

In sum, our contributions are: 1) a raytracing approach to dif-
fusion curves that allows the seamless integration with clas-
sic vector and raster graphics; 2) extended curve attributes
such as weighting functions and transparency to provide
flexible control; 3) a GPU-based implementation achieving
interactive frame rates. Figure 1 shows an example of our
rendered images. Note how the textures and gradient fills
add pleasing details to the rendering.

2. Related Work

Curves are basic drawing elements in vector-based tools
such as Adobe Illustrator and CorelDraw. Typically vector
curves are defined with various attributes such as color, gra-
dients, and patterns, which collectively define a shaded im-
age. For complex shading effects, the gradient mesh is a
powerful tool which represents an image as a lattice mesh,
with smooth color transitions controlled by mesh vertices.
While techniques exist to automatically optimize complex
gradient meshes [SLWSO07], it remains difficult and time-
consuming to create gradient meshes free-hand from scratch.

In [OBW*08], the diffusion curve was proposed as a
new vector-based primitive which allows arbitrarily shaped
curves to shade an image through the diffusion process.
Compared to classic vector graphics, this can provide a more
convenient and intuitive way to design smooth-shaded im-
ages. The underlying computation, which is solving a Pois-
son equation to simulate the diffusion, is also a fundamen-
tal element in a variety of other applications such as tone

submitted to Eurographics Symposium on Rendering (2011)

J. C. Bowers & J. Leahey & R. Wang / A Ray Tracing Approach to Diffusion Curves 3

mapping [FLWO02], image stitching and cloning [PGB03],
and image matting [SJTS04]. Because solving the Pois-
son equation is computationally expensive for large images,
most existing methods employ an efficient multigrid solu-
tion [BFGS03, KHOS8]. In addition, GPU-based multigrid
solvers have also been studied [MPOS, JCW09a] to facili-
tate interactive applications. In [Aga07], a quadtree method
was proposed, which exploits adaptive subdivision to signifi-
cantly improve the computation speed of solving large-scale
diffusion problems.

As the diffusion process requires a gradient vector field that
is fundamentally different from how classic vector graphics
is represented, employing diffusion curves often means cer-
tain familiar operations, such as the radial gradient fill, must
be redefined (e.g. by using an inner and outer circular curves)
to match the new representation. This makes such operations
inconvenient to edit. Other operations such as the pattern fill
are currently unsupported by diffusion curves.

The standard diffusion curve formulation does not allow
the diffusion process to be modified. Recently, Bezerra et
al. [BEDT10] addressed this issue by introducing several
flexible diffusion constraints, including the diffusion bar-
rier, color strength, anisotropic diffusion, and non-local con-
straints. While some of these flexibilities are shared with our
method, their underlying model is still the diffusion process,
thus they do not support gradient fills or textures. In addition,
they still require the image to be solved globally, thus the
constraints can significantly increase the computation cost,
requiring 4~5 seconds to generate a 512x512 image.

For image cloning, Farbman et al. [FHL*09] proposed to re-
place the diffusion process with smooth interpolation using
the analytic mean-value coordinates [Flo03, JSWO05]. Their
method is based on the observation that the Poisson cloning
essentially constructs a minimal surface which is well cap-
tured by a harmonic-like interpolant such as mean-value co-
ordinates. Although the interpolation does not necessarily
produce identical results with the Poisson equation, they are
typically indistinguishable, and there is no perceptual evi-
dence that either solution produces better quality than the
other. Therefore interpolation becomes an attractive alter-
native that provides benefits in both computation speed and
memory cost. However, this method cannot be directly used
for solving diffusion curves, as it ignores the visibility of
curves, causing colors to spread across curve boundaries.

Diffusion curves have also been applied in [JCWO09b] to
define surface details as vector-based textures. This allows
sharp features on the surface to be preserved upon closeup
examination. However, as discussed in their paper, sev-
eral issues must be carefully handled, including the view-
dependent nature of surface texturing and the aliasing of
curve details upon extreme closeups. Both issues have to do
with the fact that a diffusion-based solution must solve the
entire image globally and on a finite resolution pixel grid. In

submitted to Eurographics Symposium on Rendering (2011)

contrast, our raytracing based solution avoids these issues as
it can compute solutions for an arbitrary sets of pixels.

Using diffusion curves for texturing has also been studied
in [WOBTO09], where they use diffusion curves to define uv
coordinates across the textured region. Their method focuses
on texturing closed regions that do not interact with the rest
of the image. In contrast, our method defines texture shaders
for curves, which can interact with other curves and provide
more flexibility without relying on multiple layers. Another
related work is a technique for estimating color/texture pa-
rameters for vector graphics, as proposed by [JCW11]. Their
goal is to employ a procedural noise function to generate tex-
tures that mimic natural images.

In [TSNI10], Takayama et al. extended diffusion curves to
diffusion surfaces, which can be used to easily construct 3D
textures. They compute rendering result on a cross section
of the texture by using GPU-based positive mean-value co-
ordinates [LKCOLO7]. This approach is similar to ours, but
uses rasterization instead of raytracing. It is currently not in-
teractive, requiring seconds to half a minute to compute each
frame at a sparse set of sample points. As discussed in Sec-
tion 1, for the purpose of solving diffusion curves, we have
found raytracing to provide clear advantages over rasteriza-
tion, not only in flexibility and quality, but also in speed.

3. Algorithms and Implementation

Overview. As with previous work, our images are described
by curves with shading information defined on each side of
the curve. The simplest shading information is color, as in
standard diffusion curves; but we extend it to a more general
concept called shaders, which allow us to incorporate clas-
sic vector and raster graphics tools such as gradient fill and
textures. Below we first describe our raytracing formulation
and explain shaders; we then describe additional attributes
that can customize the contribution of each curve; finally, we
present implementation details, and a two-stage image adap-
tive sampling algorithm to achieve interactive framerates.

Raytracing Formulation. Our basic algorithm is quite in-
tuitive to understand: we treat the curves as virtual light
sources that emit radiance energy to the surrounding space.
Given this, the color at any 2D point p is simply assigned
as the total radiance / (accounting for occlusion) received at
that point, which is is calculated as:

2n
I(p)= | = Lixi(p,8)) w(xi(p,0))d6 M

Here x;(p,0) is the curve point that a ray originating from
p intersects in direction 0. It accounts for visibility, thus a
curve point only makes contribution to p if there is no other
curve blocking the path. L is the source radiance of x; ob-
tained from the shading information stored at x;. w is the
normalized weight that determines the contribution of the
source. It is typically based on the distance between x; and p

4 J. C. Bowers & J. Leahey & R. Wang / A Ray Tracing Approach to Diffusion Curves

Figure 2: Our algorithm works by tracing stochastic rays
from a pixel (shown on the right) into the 2D scene of curves,
computing intersections, and integrating the results (Eq. 1).
Each curve is assigned a shader defining the source radi-
ance (indicated by the squares in the left image), a weighting
function and a transparency factor.

but can include other factors. Finally, the integration is over
the range from O to 27.

Note that this formulation is similar to the rendering equa-
tion in global illumination [Kaj86], thus can be evaluated
using stochastic ray tracing at each receiver point p. By
picking different weighting functions w, we can influence
how a curve contributes to its nearby space. In some spe-
cial cases, the integral can be analytically computed. For
instance, if w is set to be inversely proportional to the dis-
tance between x; and p (i.e. w ~ Tl—l’l)’ L is defined by
linear interpolation and occlusion is ignored, then the inte-
gral has an analytic solution known as the mean-value inter-
polation [Flo03,JSWO0S5]. In the general case, however, the
integral has no analytic solution and therefore must be nu-
merically evaluated.

Shaders. Our raytracing formulation allows for the develop-
ment of a set of shaders to define the source radiance L. The
first is a basic color shader which provides an interpolated
color along the curve, and the value is invariant to the loca-
tion of the receiver point. This is equivalent to the definition
of color in standard diffusion curves.

The second shader, called the gradient fill shader, allows
the user to define a classic gradient fill operation attached
to the curve. The most commonly used fill operations in-
clude the linear, radial, and angular fills, which are currently
supported in our implementation. Other choices can be eas-
ily added, including arbitrary procedurally defined gradient
fills. To create a gradient fill shader, the user will place down
two control points, define their colors, and select the type of
fill operations. When a ray hits the curve, the source radiance
is calculated from the location of the receiver point relative
to the two control points. Note that in this case, although the
source color is not defined along the curve, the curve serves
as a boundary that confines the influence of a fill operation
to only one side of the curve.

The third shader, called the texture shader, allows the user
to define a raster texture attached to the curve. This shader

(@) (W) ©
Figure 3: (a) and (b) compare the effect of changing the rel-
ative curve weight we from 1 to 0 on the right side of the gold
curve. At we = 0, the curve stops making contribution to the
space on its right side. (c) shows the adaptive sample points
computed during the interactive mode of our algorithm.

is specified by giving two control points indicating the lower
left and upper right corners of a texture image. When a ray
hits the curve, the source radiance is calculated by a texture
lookup using the location of the receiver point relative to the
two control points.

Fig. 2 shows an illustration of the three shaders described
above. Note that by using a raytracing formulation, we unify
the treatment of all shaders and allow them to interact in the
same layer. This integrates diffusion curves with vector and
raster graphics tools seamlessly, each of which is best suited
for certain tasks.

Weighting function. We define the weighting function w in
Eq. 1 as the product of two terms: w = w¢ - wy. The first
term we is a constant that controls the overall influence of a
curve relative to other curves. A large w, increases the rela-
tive contribution of a curve. On the contrary, setting we = 0
effectively makes a barrier curve which does not contribute
to its surrounding space. This is similar to the concept of
diffusion barrier in [BEDT10]. As each side of the curve can
define a different weighting function, a zero weight is use-
ful when only one side of the curve needs to specify colors
but not the other side. Fig. 3 shows an example of setting a
curve’s weight we = 0.

The second term wy is a distance based weighting defined
as wy(x;,p) = |x; — p| 7, which is the negative p-th power
of the distance between x; and p. Typically p > 0, thus this
term attenuates the contribution of a source point that is far
away from p. The default value of p is 1. As p increases,
the influence of a curve becomes increasingly more concen-
trated around itself; whereas when p decreases, the distance
plays a less important role, leading to a more uniform shad-
ing. Fig. 4 (a-d) shows a comparison example.

Transparency. An additional attribute of the curve is the
transparency 0O, which allows a curve’s influence to pen-
etrate through other curves. This can be easily achieved in
raytracing by allowing the ray to continue traveling after the
first intersection. The total return value of the ray is calcu-
lated as (1 — o) -1 't + O - I, where I is the contribution of
the current intersection point (foreground), and 7, is the con-
tribution beyond it (background), which can be recursively

submitted to Eurographics Symposium on Rendering (2011)

J. C. Bowers & J. Leahey & R. Wang / A Ray Tracing Approach to Diffusion Curves 5

(@ p=0) p=1/2

©p=1 (dp=2

Figure 4: (a)-(d) compare different distance weighting functions wy applied on the pinwheel image.

Figure 5: These two images demonstrate the effect of trans-
parency. The left example is the same pinwheel as shown
above but defined with different colors and with curve trans-
parency enabled. Note the difference in the transparent spi-
rals, especially the dark ones. The right example shows how
the curve transparency leads to a translucency effect.

defined. Fig. 5 show two examples of transparency effect.
Note that compared to Fig. 4, the pinwheel image in this ex-
ample shows transparent spirals.

GPU Implementation. We have implemented our algorithm
on the GPU using the Thrust library [HB10]. There are three
main steps. For simplicity, all curves are defined as cubic
Bézier curves. The first step is to subdivide the Bézier curves
into a set of line segments using a standard subdivision al-
gorithm. For each line segment we store the curve parameter
values ¢ of the two end points. Second, we build a uniform
grid using a parallel algorithm from the set of line segments,
and use this structure to accelerate raytracing. We also ex-
perimented with a BVH but found the uniform grid to work
better in practice, because it is inexpensive to compute, and
is well-suited for scenes with many curves distributed over
the entire image. We set the grid resolution to 2v/N x 2v/N
for a scene with N segments. When more curves are added,
the performance using the uniform grid does not degrade sig-
nificantly. The final step is to perform raytracing in parallel
for every pixel of the target image.

Our default image resolution is 512x512, and we trace 128
rays per pixel using stratified random sampling in the an-
gles. The origin of each ray is assigned using a 2x2 sub-
pixel jittered sample pattern, which provides reasonable anti-

submitted to Eurographics Symposium on Rendering (2011)

aliasing in the rendering without increasing the computation
cost. Note that instead of discretizing the curves into line
segments, we could also trace Bézier curves directly by solv-
ing cubic polynomials. This can potentially help reduce the
ray-curve intersection cost.

Image adaptive sampling. Since all computations are per-
formed in 2D and on the GPU, it is relatively fast to trace
a large number of rays. Still, to provide more interactivity
while the user creates and modifies curves, we exploit the
smoothness of a diffusion curves image to enable simple im-
age adaptive sampling. While the user interacts with the soft-
ware, our algorithm performs raytracing in two stages. The
first stage partitions the image into 8x8 pixel blocks, and
computes shading at all block corner pixels with 64 rays per
pixel. For each sampled pixel we store its shading value as
well as the shortest intersection distance among all the traced
rays. This shortest distance value indicates whether a pixel
is sufficiently close to a nearby curve. Then in the second
stage, we collect all blocks that have at least one corner pixel
with a shortest distance less than €, and perform raytracing at
all 8x8 pixels belonging to that block. For the other blocks,
the interior pixels are bilinearly interpolated from the corner
pixels. We currently set € to 8 pixels wide, which works quite
well in practice. This two-stage adaptive sampling algorithm
can perform at 14~25 fps with reasonably good quality (re-
fer to the paper video). We can optionally perform a 3x3
median filtering to reduce the sampling noise. The right im-
age of Fig. 3 shows the adaptive sample pixels computed for
the wave image. These pixels will be raytraced. Other pix-
els, which are interpolated, are not shown. As soon as the
user has been inactive for a certain period of time (1 second
by default), our algorithm will invoke a full rendering pass
that traces 128 rays at every image pixel. This will provide a
high-quality rendered image at 2~3 fps.

4. Results and Discussions

In this section we present results highlighting the flexibility
of our method in integrating different types of shaders and
customizing the curve contributions. We demonstrate how
this flexibility allows artists to easily create interesting and

6 J. C. Bowers & J. Leahey & R. Wang / A Ray Tracing Approach to Diffusion Curves

d &
Figure 6: A cartoon of a dog. Left: the set of curves. Mid-
dle: result from applying only color shaders. Right: result
from applying both color and texture shaders on the curves,
achieving a particular aesthetic similar to painted paper
collage. Note the interaction between the color and texture
shaders, particularly in the shading of the dog’s leg in the
center of the right image.

desirable image effects without resorting to compositing. All
images shown in this paper are rendered at 512x512 reso-
lution, and results were collected on a PC with Intel Core 17
2.67GHz CPU and an NVIDIA GTX470 GPU.

Shaders. Fig. 1 shows a drawing of a barn owl. Both images
are computed using our method. In the left image, curves
are assigned only color shaders, simulating standard diffu-
sion curves. In the right image, we applied radial gradient
fill shaders in several places to introduce shading details. For
example, the right outer boundary curves of the owl has two
radial gradient shaders defined to create the red highlights
in the sky; and the moon is defined by a white to dark blue
radial gradient shader to create a perfectly circular halo. In
addition, texture shaders are added to the curves defining the
owl and the tree branch to produce a stylized effect. The ef-
fect of two different texture shaders interacting in an open
region can be seen in this image as well. The top of the
wing’s checkerboard pattern fades into the slate texture of
the grey feather. This sort of blending would require more
careful masking to achieve using a layered approach.

Fig. 2 highlights the use of several different shaders, indi-
cated by the squares pointing to their corresponding curves.
Fig. 6 shows an example of texture shaders applied on a car-
toon image of a dog. In the middle image, curves are as-
signed only color shaders; whereas in the right image, some
curves are assigned texture shaders, simplifying the creation
of fine details in the image and providing a stylish textured
rendering. Note the interactions between the standard col-
ored curves and textured curves, which would be difficult to
reproduce using image layer compositing techniques.

Fig. 7 shows another example: the bird is drawn with only
a few curves, but our method produces a detailed painterly
style rendering achieved by applying texture shaders to the
curves. Note that on the bird’s head, the dark gray curve
along the left side is used to add darker shading providing
a three-dimensional feel, and the yellow curves above the
eye provide additional shading around the eyes and interpo-
late smoothly with the textures. The specular highlights on
the eyes are defined by vector radial fills.

Figure 7: A cartoon of a bird. Texture shaders were applied
to the curves to produce a painted effect. Note how the yellow
shading defined on the brow diffuses into the texture to add
highlights. The eyes are defined by vector gradient fills.

Figure 8: In this example, the shadow curve and the hori-
zontal curve are defined with transparency. Thus edits to the
ground color (from green towards yellow) results in corre-
sponding color changes in the shadowed region and the ver-
tical wall. This makes it easy to preserve the desired image
effects without having to edit any other curve.

Fig. 4 (c) shows an image of a spiral pinwheel. Some curves
are defined with a texture shader that shows a detailed leaf
texture; other curves are attached with different radial gradi-
ent fill shaders. These shaders interact with each other to cre-
ate the smooth-shaded image. Each radial gradient is white
at the center and transforms to a different green color on each
curve. To create such a radial gradient, the user only has to
specify the center and radius of a circle. In contrast, repro-
ducing such effect using standard diffusion curves would be
difficult: a user would have to create several carefully cho-
sen color constraints along the side of each spiral in order to
generate a perfectly circular gradient. Using a compositing
based technique would also be difficult as it requires care-
fully defining the transparent mask of each layer.

Weighting functions and transparancy. Fig. 4 shows the
effects of applying different distance weighting functions wy
on the curves. As the power p becomes smaller, the effect of
distance decreases, leading to a more uniformly shaded im-
age. In comparison, as p becomes larger, the influence of a
curve is more concentrated around itself, creating an image
with higher contrast. Fig. 5 shows two examples where the
curves are assigned transparency values. Note how the ef-
fect of transparency softens the colored and textured regions,
and in some cases (e.g. the image on the right) mimics the
appearance of a translucent object.

submitted to Eurographics Symposium on Rendering (2011)

J. C. Bowers & J. Leahey & R. Wang / A Ray Tracing Approach to Diffusion Curves 7

(a) Original diffusion curves

(b) Our method

Figure 9: A comparison of the original diffusion curves and
our method on the Zephyr image [OBW* 08]. The inlets show
zoomed-in comparisons of the details around the eyes. The
two images look qualitatively similar. Differences are notice-
able at the end points of the curves that define the eyes.

Fig. 8 shows an example where the transparency feature can
be used to define colored shadows and indirect color bleed-
ing effects. Here the shadow curve and the horizontal curve
both have transparency turned on. As the user edits the color
of the ground, the colors inside the shadow and on the ver-
tical wall change correspondingly due to transparency. This
provides a convenient and intuitive way to edit the image.
If standard diffusion curves were used, achieving the same
effect would have required editing several other curves.

Comparison to [OBW*08]. In Fig. 9, 10 and 11 we
show comparisons between the original diffusion curves
method [OBW™*08] and our method. Fig. 11 is the pipe im-
age we created, and for this example we have removed tex-
tures and gradient fills in order to apply their method. While
subtle differences are noticeable, the two images look quali-
tatively the same. The image on the right shows a 2x differ-
ence image of the two renderings. The primary differences
are around the curve edges.

Fig. 9 is an example taken directly from their paper. Note
that the two images look qualitatively similar, but differences
are noticeable around the end points of the curves. To ex-
amine these differences more carefully, in Fig. 10 we have
constructed a simple example consisting of a curve that is
shaped like the letter ’b’, and one side of the curve is col-
ored red while the other side black. First, we observe that
at the top end of the curve, the two methods diffuse colors
differently. In (a), the red color is diffused all the way to the
left side of the image due to the opening on the top, while
our method in (b) generates a sharp boundary between the
two sides (as pixels on the left do not receive contribution
from the right side of the curve). Second, at the other end
point, where the curve slightly crosses itself to the left, we
observe that (a) exhibit more pronounced artifacts than (b).

This example simply shows that the two methods behave dif-
ferently in certain cases, and there is no evidence that either
method is inherently better or worse than the other. We be-

submitted to Eurographics Symposium on Rendering (2011)

(b) Our method

(a) Original diffusion curves

Figure 10: A comparison of the original diffusion curves
and our method on the ’b’-shaped curve. At the top end point
of the curve, we observe that the colors are diffused in dif-
ferent ways; at the other end point (where the curve slightly
crosses itself), we observe that the original diffusion curves
generate more pronounced artifacts than our method.

lieve that since the motivation for these methods is artistic,
the Poisson-based approach is simply one among many pos-
sible ways for generating smooth shaded images.

Performance. As described in Section 3, our algorithm
switches between a fast adaptive sampling mode during in-
teraction and a high quality full frame rendering mode once
the user has been inactive for a second. Using an NVIDIA
GTX470 GPU, we achieve 14-25 fps for the adaptive sam-
pling mode, and 2-3 fps for the high quality mode for all the
images included in the paper. We found the speed to be suffi-
cient for interaction and is relatively insensitive to the num-
ber of curves. This insensitivity is a result of the fact that
as the number of curves increases the rays tend to be termi-
nated more quickly during ray tracing using a uniform grid
structure. Note that enabling transparency is more expensive
because each ray must continue traveling after intersecting a
curve. With global transparency turned on, the spiral image
in Figure 4 took about 2 seconds to render in high-quality
mode. All images included in the paper were made with be-
tween 15 and 50 curves, resulting in between 300 to 1000
line segments. All high-quality full frame renderings were
computed within 300~500 ms per frame.

Noise and Sampling Artifacts. Since our method uses
stochastic ray tracing, an insufficient number of rays can lead
to numerical issues such as noise and sampling artifacts in
the rendering. This will become especially noticeable dur-
ing an animation, where the sampling artifacts lead to tem-
poral flickering and aliasing. So far by using 128 rays per
pixel we haven’t noticed any obvious sampling artifacts in
the high-quality rendered images. Furthermore, our current
implementation pre-generates the set of rays for every pixel
using pseudo-random numbers, and they remain the same
through successive frames. Therefore, during an animation
when the user edits curves locally, the pixels that are not
influenced by the edited curves will return the same values
as the previous frame. Hence in practice the animations we

8 J. C. Bowers & J. Leahey & R. Wang / A Ray Tracing Approach to Diffusion Curves

e

e

(a) Original diffusion curves

(b) Our method

(c) 2x difference

Figure 11: A comparison between images generated using [OBW*08] (left) and our method (middle); and a 2x difference
image is shown on the right. For this comparison we used the pipe image from Figure 2 but with the textures and gradient fills
removed. Note how the two images look qualitatively the same. The primary differences are on the edges of the curves.

generated using the high-quality renderer appear stable and
are not prone to temporal artifacts. Refer to the supplemental
video for an example animation.

5. Conclusions and Future Work

To summarize, we have presented a raytracing solution to
diffusion curves that provides the following benefits: 1) it
allows a unified treatment of diffusion curves with classic
vector and raster graphics by using shaders; 2) it is easy
to extend with additional curve attributes such as weighting
functions and transparency; 3) it provides interactive frame
rates using a GPU-based implementation.

In future work, we would like to extend our method to diffu-
sion surfaces. It is also possible to extend our method to ren-
der surface details defined by textures, similar to [JCW(09b].
In fact, the ‘local’ computation nature of our method makes
it suitable for many view-dependent rendering scenarios.
One limitation of our work is that it is currently unclear how
a ray tracing based approach can achieve anisotropic diffu-
sion effects as presented in [BEDT10]. We would like to in-
vestigate possible ways to extend our method along this di-
rection. Finally, our GPU implementation is not highly opti-
mized, and there is opportunity for significant improvement
towards real-time framerates.

Acknowledgments. We would like to thank Copper Giloth,
Zijun Guo, and Fred Zinn for discussions and feedback on
the project. This work was supported by NSF grant CCF-
0746577 and an NSF graduate student fellowship.

References

[Aga07] AGARWALA A.: Efficient gradient-domain compositing
using quadtrees. ACM Trans. Graph. 26 (2007). 3

[BEDT10] BEZERRA H., EISEMANN E., DECARLO D., THOL-
LOT J.: Diffusion constraints for vector graphics. In Proc. of
NPAR (2010), pp. 35-42. 1,3,4, 8

[BFGS03] BoLzJ., FARMER I., GRINSPUN E., SCHROODER P.:
Sparse matrix solvers on the GPU: conjugate gradients and multi-
grid. ACM Trans. Graph. 22 (2003), 917-924. 3

[FHL*09] FARBMAN Z., HOFFER G., LIPMAN Y., COHEN-OR
D., LISCHINSKI D.: Coordinates for instant image cloning. ACM
Trans. Graph. 28 (2009), 67:1-67:9. 2,3

[Flo03] FLOATER M. S.: Mean value coordinates. Comput. Aided
Geom. Des. 20 (2003), 19-27. 2, 3,4

[FLWO02] FATTAL R., LISCHINSKI D., WERMAN M.: Gradient
domain high dynamic range compression. ACM Trans. Graph.
21 (2002), 249-256. 3

[HB10] HOBEROCK J., BELL N.: Thrust: A parallel template
library, 2010. 5

[JCWO09a] JESCHKE S., CLINE D., WONKA P.: A GPU Lapla-
cian solver for diffusion curves and Poisson image editing. ACM
Trans. Graph. 28 (2009), 116:1-116:8. 1, 3

[JCWO09b] JESCHKE S., CLINE D., WONKA P.: Rendering sur-
face details with diffusion curves. ACM Trans. Graph. 28 (2009),
117:1-117:8. 1,3, 8

[JCWI11] JESCHKE S., CLINE D., WONKA P.: Estimating color
and texture parameters for vector graphics. Computer Graphics
Forum 2,30 (2011), to appear. 1, 3

[JSW05] Ju T., SCHAEFER S., WARREN J.: Mean value co-
ordinates for closed triangular meshes. ACM Trans. Graph. 24
(2005), 561-566. 3, 4

[Kaj86] KaAIiyaJ. T.: The rendering equation. SSGGRAPH Com-
put. Graph. 20 (1986), 143-150. 4

[KHO8] KAZHDAN M., HOPPE H.: Streaming multigrid for
gradient-domain operations on large images. ACM Trans. Graph.
27 (2008), 21:1-21:10. 3

[LKCOLO07] LiPMAN Y., KOPF J., COHEN-OR D., LEVIN D.:
GPU-assisted positive mean value coordinates for mesh defor-
mations. In Proc. of SGP (2007), pp. 117-123. 3

[MP0O8] MCCANN J., POLLARD N. S.: Real-time gradient-
domain painting. ACM Trans. Graph. 27 (2008), 93:1-93:7. 3

[OBW™*08] ORZAN A., BOUSSEAU A., WINNEMOLLER H.,
BARLA P., THOLLOT J., SALESIN D.: Diffusion curves: a vector
representation for smooth-shaded images. ACM Trans. Graph. 27
(2008), 92:1-92:8. 1,2,7, 8

[PGB03] PEREZ P., GANGNET M., BLAKE A.: Poisson image
editing. ACM Trans. Graph. 22 (2003), 313-318. 3

[SJITS04] SuN J., JiA J., TANG C.-K., SHUM H.-Y.: Poisson
matting. ACM Trans. Graph. 23 (2004), 315-321. 3

[SLWS07] SuN]J.,LIANG L., WENF., SHUM H.-Y.: Image vec-
torization using optimized gradient meshes. ACM Trans. Graph.
26 (2007). 2

[TSNI10] TAKAYAMA K., SORKINE O., NEALEN A., IGARASHI
T.: Volumetric modeling with diffusion surfaces. ACM Trans.
Graph. 29 (2010), 180:1-180:8. 1,2, 3

[WOBT09] WINNEMOLLER H., ORZAN A., BOISSIEUX L.,
THOLLOT J.: Texture design and draping in 2d images. Com-
puter Graphics Forum 28, 4 (2009), 1091-1099. 1, 3

submitted to Eurographics Symposium on Rendering (2011)

