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Abstract
Recent research in bidirectional importance sampling has focused primarily on structured illumination sources
such as distant environment maps, while unstructured illumination has received little attention. In this paper, we
present a method for bidirectional importance sampling of unstructured illumination, allowing us to use the same
method for sampling both distant as well as local/indirect sources. Building upon recent work in [WFA∗05], we
model complex illumination as a large set of point lights. The subsequent sampling process draws samples only
from this point set. We start by constructing a piecewise constant approximation for the lighting using an illumi-
nation cut [CPWAP08]. We show that this cut can be used directly for illumination importance sampling. We then
use BRDF importance sampling followed by sample counting to update the cut, resulting in a bidirectional distri-
bution that closely approximates the product of the illumination and BRDF. Drawing visibility samples from this
new distribution significantly reduces the sampling variance. As a main advance over previous work, our method
allows for unstructured sources, including arbitrary local direct lighting and one-bounce of indirect lighting.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Raytracing

1. Introduction

As described in [Kaj86], the computation of rendering in-
volves estimating a hemispherical integral of the lighting,
visibility, and surface BRDFs. Numerical simulation of the
integral often uses Monte Carlo sampling [Vea98]. It is well-
known that the efficiency of Monte Carlo methods can be
dramatically improved by using a proper importance sam-
pling strategy. Often this requires drawing samples from a
known distribution that is closely correlated with the inte-
grand. Since the integrand in rendering involves the product
of several terms, drawing samples simply from one of the
terms typically produces poor results when the other terms
contain high-frequency changes.

Recently, researchers have proposed several bidirectional
importance sampling methods [BGH05] that draw samples
according to the product distribution of the illumination
function and surface BRDF. These methods incorporate im-
portant high-frequency changes in both terms, therefore can
drastically reduce the sampling variance and improve the
overall image quality with the same rendering time.

Most existing bidirectional methods, however, focus on
structured light sources that can be naturally parameterized
as 2D images. One popular choice is distant illumination
represented as HDR environment maps. In this case, the il-
lumination radiance along any arbitrary ray can be imme-
diately obtained through texture access, making it feasible
to start from the BRDF distribution and efficiently evaluate
its joint distribution with the lighting [BGH05]. In addition,
image-based sources enable the use of basis projection meth-
ods such as wavelets to separately approximate the lighting
and BRDF in advance, then construct a combined sampling
distribution function on the fly [CJAMJ05].

Unfortunately these approaches do not easily extend to
unstructured light sources which may not have a natural
parametrization. Examples includes arbitrary local direct
lighting, and indirect lighting where the source illumination
comes from the scene itself. The main difficulty is that due
to the unstructured nature of the source, it is no longer trivial
to obtain the radiance along any arbitrary ray. In addition,
approaches based on wavelet projection require the source
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to be parameterized as 2D images. This requirement is non-
trivial to satisfy for unstructured lights.

In this paper, we present a simple and efficient method
for bidirectional importance sampling with unstructured di-
rect illumination. As suggested by recent work [WFA∗05,
HPB07,AUW07], we assume that complex illumination can
be sufficiently sampled at many point lights distributed over
the source. The subsequent sampling process then draws
samples only from this point set. We start by constructing
piecewise constant clusters of the lighting using the illu-
mination cut approach proposed by [CPWAP08]. We show
that this cut can be used directly for illumination impor-
tance sampling. Next, for each pixel to be shaded, we apply
BRDF importance sampling to cast a small number of sec-
ondary rays. We keep track of which illumination cluster(s)
each ray hits by using a BVH, and then use the total num-
ber of BRDF samples fallen into each cluster to adjust the
importance value stored at that cluster. The updated cut now
closely approximates the product distribution of the illumi-
nation and BRDF. Finally, we draw visibility samples from
this new distribution and complete the shading.

As a major advance over previous work, our method is
no longer restricted to structured sources. This flexibility al-
lows us to use the same method for sampling both distant
sources as well as local sources, such as projected light-
ing and one-bounce of indirect lighting. In addition, our
method shares a number of advantages with previous tech-
niques [BGH05, CAM08b]: 1) it requires no precomputed
BRDF or visibility data, thus is suitable for handling changes
of the scene; 2) it only incurs a moderate overhead for con-
structing the bidirectional sampling function; 3) it is easy to
implement on top of an existing ray tracer.

2. Related Work

Importance sampling reduces sampling variance by using a
selected distribution – called the importance function – that
is closely correlated with the integrand itself. High-energy
regions in the integrand contribute more to the result, there-
fore require higher sampling density to improve efficiency.

Importance sampling from environment maps. Many
algorithms construct importance functions based on a sin-
gle term in the rendering equation, such as the illumination
function. In photorealistic rendering, illumination is often
modeled as distant HDR environment maps [DM97]. Much
previous research in this direction has focused on distribut-
ing samples according to the energy distribution in the en-
vironment map, such as by using stratified sampling [CD],
hierarchical sampling [Deb05], structured importance sam-
pling [ARBJ03], fast blue noise sampling [ODJ04], and in-
terleaved sampling [KK03]. As the importance of BRDF is
ignored, these methods provide poor efficiency in the pres-
ence of highly glossy materials.

Importance sampling from BRDFs. BRDF importance

sampling has also been studied extensively. Simple BRDF
models, such as the Phong, have analytic integrals and can
be sampled at high efficiency. More complex BRDFs can
be sampled by using an appropriate distribution that looks
like the BRDF itself. For measured BRDFs, [LRR04] intro-
duced a general sampling method based on factored BRDF
representations. These sampling methods rely purely on the
BRDF, therefore face efficiency problems when the lighting
contains high-frequency changes.

Bidirectional importance sampling Recent work has fo-
cused on sampling the product distribution of several func-
tions involved in the rendering equation. Veach [Vea98] pro-
posed a multiple importance sampling (MIS) strategy that
draws samples from the illumination and BRDF separately,
and then combines the results to reduce the overall sam-
pling variance. A recent work by Burke et al. [BGH05] in-
troduced bidirectional importance sampling, which samples
the product distribution of the illumination and BRDF. They
proposed an approach based on sampling importance resam-
pling (SIR), which is also explored by [TCE05].

SIR works by drawing an initial, relatively large set of
samples from one distribution, then evaluating these samples
at a second distribution, and drawing a smaller set of final
samples accordingly. Our method differs from SIR in that
our final samples are not drawn from the initial, therefore our
method is less biased towards the distribution where these
initial samples are selected from. See Section 3.4 for a more
detailed discussion.

Wavelet importance sampling [CJAMJ05] uses nonlin-
ear wavelet approximation and triple product wavelet in-
tegrals [NRH04] to rapidly construct bidirectional impor-
tance functions on the fly. This approach requires precom-
puted BRDF data. [CETC06] eliminated the precomputa-
tion requirement by splitting environment maps recursively
based on the peaks of a dynamic BRDF. Later, [CAM08b]
presented an improved approach that directly computes a
wavelet representation for the BRDF using a quadtree. In
addition, they introduced a faster algorithm for computing
the product of two wavelet functions.

A main limitation with these methods is that they are re-
stricted to structured illumination sources that are parame-
terized as 2D images. This presents difficulties in dealing
with unstructured sources such as indirect lighting and arbi-
trary local direct lighting. The fundamental difference in our
method is that we model complex illumination as a large, un-
structured set of point lights, and the subsequent sampling
process draws samples only from this point set. This ap-
proach unifies the treatment of both structured and unstruc-
tured light sources, providing the same sampling efficiency
but much improved flexibility.

A number of recent efforts [GH06,CAM08a,DWF06] ex-
plore visibility importance sampling to further improve the
efficiency of Monte Carlo sampling. These methods typi-
cally exploit the spatial/temporal coherence in visibility to
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provide an approximation of the visibility function. In gen-
eral, visibility importance sampling is less frequently used
due to the high cost of sampling visibility on the fly.

[Jen95] introduced a method that uses the photon map
to efficiently estimate the incident radiance arriving at a
point, where the radiance is represented on a low-resolution
map transformed by an invertible BRDF distribution. Since
the incident radiance has already included visibility, this
method properly accounts for all the important factors in-
volved in shading. [SL06] extended this approach to more
general materials by eliminating the need for an invertible
BRDF. [HP02, Pha] also exploit the photon map to estimate
illumination importance, but combine it with MIS to account
for BRDF importance. The main limitation of these methods
is that the use of a small number of photons (typically 50) is
reasonable for low-frequency lights but insufficient for de-
tailed high-frequency sources, such as image-based lighting.

Illumination from many lights. To reduce the rendering
cost, a common technique is to convert complex illumina-
tion to a large number of point sources. Standard algorithms
using this approach entail a linear cost with the number of
lights. Recently, Walter et al. [WFA∗05] introduced Light-
cuts – a scalable sublinear solution for handling many lights
using hierarchical clustering. This method exploits the il-
lumination coherence using cuts that represents piecewise
constant approximations. Our method is built directly upon
theirs, but we focus on importance sampling, and provide a
more efficient way for handling arbitrary BRDFs. The ma-
trix row-column sampling algorithm by [HPB07] exploits
the GPU to sample and cluster many lights, providing im-
proved rendering speed. However, by using the same clus-
tering of lights for the entire scene, their method is biased
and is not suitable for glossy BRDFs.

[AUW07] explore the idea of cuts in precomputed visi-
bility, achieving interactive relighting with dynamic BRDFs.
More recently, [CPWAP08] proposed a fast algorithm for
combining multiple cuts on the GPU. These methods require
significant precomputed visibility data, therefore the render-
ing quality is limited by the precomputation accuracy and
the vertex sampling rate. Our method differs from theirs in
that we use bidirectional importance sampling to cast visibil-
ity samples per pixel on the fly, eliminating the need for any
precomputed data. As a result, ours gives an unbiased solu-
tion, and the rendering quality is not restricted by precom-
putation. Furthermore, we provide an improved method for
evaluating the BRDF average per cluster, resulting in more
robust estimation for highly glossy materials.

3. Algorithm Overview

Assumptions. We make two assumptions that are similar to
previous work in [WFA∗05, HPB07]. First, we assume that
illumination can be modeled as many diffuse (isotropically
radiating) point lights distributed over the source. These

points may be infinitely far away, representing distant illu-
mination. As the number of points is sufficiently large, sub-
sequent sampling only needs to draw samples within this
point set. Second, we only consider direct illumination from
the point lights. This covers both direct illumination received
from distant or local sources, and one final bounce of indi-
rect illumination received from the scene surface. In the lat-
ter case, we assume that the direct lighting is simple enough
to be computed on the GPU, e.g. using shadow mapping.

3.1. Importance Sampling from a Set of Point Lights

We use S to denote the set of point lights. In the case of
local illumination, each point in the set is associated with a
position, a small surface area, and a normal. In the case of
environment illumination, each point is infinitely far away,
and is associated with a direction and a small solid angle.

The reflected radiance B caused by direct illumination
from S to a surface point xo is computed by:

B(xo,ω) = ∑
S

L(xi) fr(xi→ xo,ω)V (xi)G(xi) cosθi (1)

where ω is the viewing direction, xi ∈ S is a point light,
L is the source radiance, fr is the surface BRDF, and V is
the binary visibility function. Here G(xi) is the solid angle
subtended by xi at xo, and θi is the incident angle.

To simplify the notation, we combine both cosθi and G
into fr, and then focus on a fixed surface point at a fixed
viewing direction, resulting in:

B = ∑
S

L(xi) fr(xi)V (xi) (2)

Directly evaluating this summation is impractical as S
typically contains a large number (≥ 32K) of points. Instead,
we can use Monte Carlo importance sampling to improve the
efficiency of this computation. An unbiased Monte Carlo es-
timator of Eq 2 is given by:

B≈ 1
N

N

∑
s=1

L(xs) fr(xs)V (xs)
p(xs)

(3)

where N is the number of Monte Carlo samples, p is a prob-
ability density function (PDF), and xs ∈ S is a point light
selected from S according to distribution p. A naive exam-
ple for p is a uniform distribution: p = 1

|S| , with |S| being
the total number of point lights. In this case, a point xs is uni-
formly randomly selected from S and used to estimate Eq 3.
However, this often results in high sampling variance.

The theory in Monte Carlo methods says that sampling
variance can be dramatically reduced by using a proper dis-
tribution p that is closely correlated with the integrand. Take
the illumination function L as an example: once L is known,
we can use the luminance of L to define a PDF, such that
p(xi) ∼ L(xi). This can be achieved by first building a dis-
crete CDF (cumulative distribution function) from L, and us-
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ing the inverted CDF to draw samples. Refer to [PH04] for
details of implementation.

3.2. Importance Sampling from an Illumination Cut

As the number of point lights |S| is large, directly sam-
pling from L is still quite expensive. Therefore it is neces-
sary to exploit the coherence in L and reduce it to a lower-
dimensional vector. Although a large body of previous work
has studied using Haar wavelets to approximate L, these
methods are typically limited to distant environment light-
ing, some additionally requiring precomputed BRDF data.

Representation using cut. An alternative representation,
called cuts [WFA∗05], has been recently presented and stud-
ied by several researchers [WABG06, AUW07, AWB08]. A
cut approximates a function defined over S using piecewise
constants. For example, an illumination cut can be computed
for L by following the algorithm in [CPWAP08]. Specifi-
cally, they approximate L by partitioning S into a small num-
ber of clusters, such that the luminance of L within each clus-
ter is coherent and hence all cluster members simply take the
cluster’s average value:

〈lk〉=
1
|Ck|∑

L(xi), xi ∈ Ck (4)

where 〈·〉 denotes the average, and Ck denotes a cluster. The
geometric center of the cluster 〈xk〉 = 1

|Ck| ∑xi is computed
and stored as a representative light of each cluster.

To create the clusters, a binary light tree is built from the
point set S using a geometric distance metric. As shown in
Fig 1, individual lights are placed at the leaf nodes and in-
terior nodes represent clusters. During the building process,
we compute the bounding box of the clustered lights at each
tree node. This information will be used in the bidirectional
sampling step. Next, the source radiance L is sampled at all
leaf nodes, and the values are aggregated to interior nodes.
At each node we compute the cluster average 〈lk〉, and the
variance var(lk) which corresponds to the L2 error result-
ing from the piecewise constant approximation. Finally, a
cut through the tree is selected such that each node on the
cut represents a disjoint cluster. This results in a piecewise
constant approximation of L.

The selection of cut starts at the root node of the tree, fol-
lowed by recursive subdivision. At each subdivision step, a
node on the current cut with the highest L2 approximation er-
ror will be selected and replaced with its two children nodes.
The recursive process stops when the L2 error of each node
on the cut falls below a predefined threshold σ

2:

|Ck|var(lk)≤ σ
2, ∀k (5)

Illumination importance sampling using cut. For conve-
nience, we use vector−→Lc to denote the illumination cut. Each
element of −→Lc corresponds to a node (cluster) on the cut.
The size of the cut typically varies between 300 ∼ 1000 in

Sampled Illumination Function L

. . . . . .. . .

Figure 1: A binary light tree and cut. Leaves represent indi-
vidual point lights, and interior nodes clustered lights.

our experiments. Note that−→Lc is simply a lower-dimensional
version of the original L, therefore we can use it directly
for efficient importance sampling. This is achieved in two
steps. In the first step, we treat −→Lc as a discrete PDF, and use
the inversion method [PH04] to draw a cluster from it. Each
cluster has a probability value that is proportional to its total
luminance: |Ck|〈lk〉.

In the second step, for the cluster that we have picked
above, we draw a sample by uniformly sampling the cluster’s
leaf nodes. As we assume each cluster represents a piece-
wise constant, all its children nodes have the same impor-
tance value. Therefore it suffices to pick a uniformly ran-
dom sample among all the children nodes. The accuracy of
this approach depends on how well the cut approximates the
lighting. It is important that we compute the cut by minimiz-
ing the per-cluster error, as in Eq 5. This way, we can avoid
getting high variance across different clusters.

The overall probability of picking a sample xs is the joint
probability of the two steps:

p(xs) = p(xs ∈ Ck) · p(xs|xs ∈ Ck)∼ |Ck|〈lk〉 ·
1
|Ck|

= 〈lk〉

Note that since we use an unbiased estimator, the illumi-
nation cut does not introduce bias: it only affects the effi-
ciency and convergence speed of our method.

3.3. Bidirectional Importance Sampling

We now extend the approach in the previous section to bidi-
rectional importance sampling, where the sampling distribu-
tion p approximates the product of L and fr. Our basic ap-
proach is to start with the illumination cut, then modify the
importance value stored at each cut node by multiplying it
with an estimation of the BRDF, thus incorporating BRDF
importance. Ideally this would require computing the aver-
age BRDF value 〈ρk〉 for each cluster. Unfortunately, as the
shape of each cluster is not clearly defined, accurately esti-
mating 〈ρk〉 turns out to be a non-trivial task.

Single point sampling. One possibility is to use a single
sample at each cluster to approximate the average BRDF
value. This is essentially the approach taken by [AUW07],
where they use each cluster’s representative light to evaluate
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the BRDF, and use the result to directly substitute 〈ρk〉. We
found that this idea works quite well in many cases, but it
presents two major limitations. First, it entails a BRDF sam-
pling cost of O(|−→Lc |), which is linear to the illumination cut
size. Because BRDF sampling is expensive, as the illumina-
tion cut grows larger, this approach will quickly become too
costly to be useful. Second, as the BRDF may contain very
high frequencies relative to the cluster size, a single point
sampling can result in severe aliasing artifacts, such as miss-
ing important peaks of the BRDF. This could be resolved by
using more samples per cluster to evaluate the BRDF, but at
the cost of increased computation time.

BRDF importance sampling. To address these problems,
we propose an alternative approach that makes use of BRDF
importance sampling followed by sample counting to lower
the BRDF sampling requirement and improve efficiency. To
start, we use standard BRDF importance sampling to gener-
ate a small number (Nρ) of secondary rays. For example, the
Phong specular BRDF can be sampled via

(θ,φ) =
(

arccos( n+1
√

ξ1),2πξ2

)
where ξ1 and ξ2 are two independent uniform random vari-
ables, n is the Phong exponent parameter, and (θ,φ) are the
spherical coordinates oriented at the local surface normal.

Since the BRDF samples are generated according to the
BRDF distribution, we can think of all samples as reflected
photons that carry equal amount of energy. Therefore, by
counting the number of BRDF samples that fall into each
cluster, we can reliably estimate the density of BRDF sam-
ples and hence the average BRDF value at each cluster.

In order to keep track of which cluster(s) a BRDF sample
hits, we use a Bounding Volume Hierarchy (BVH) of the
point lights. As shown in Fig 1, a BVH is naturally imposed
by the structure of the light tree. This is done by computing
a bounding box at each tree node during the tree building
process. When a BRDF sample ray is generated, we perform
ray-box intersection tests recursively, starting from the root
node. The recursion stops whenever it has come to a cluster
node on the cut, or if the intersection test has failed. See
Figure 2 for an illustration. At each cut node, we store a
counter that indicates the total number of BRDF samples that
hit that node.

Compared to the single sampling approach, this new ap-
proach incurs a BRDF sampling cost of O(Nρ), where Nρ

(typically 64) is the number of BRDF samples and is much
smaller than the illumination cut size |−→Lc |. As BRDF impor-
tance sampling is more effective at using a limited number
of samples to resolve high-frequencies, the sampling alias-
ing problem is greatly reduced. In a way we benefit from
decoupling the BRDF sampling from the illumination ap-
proximation, making it possible to take advantage of the ef-
ficiency in both. On the other hand, our method incurs an
additional cost of O(Nρ log(|−→Lc |)) for detecting the ray-box
intersections. Note that this cost is independent of the cost

Point Lights

BVH

Figure 2: We detect which cluster(s) a BRDF sample inter-
sects by using a BVH of the light tree.

for evaluating a BRDF, therefore it’s still typically smaller
than the single point BRDF sampling cost of O(|−→Lc |), espe-
cially when complex BRDFs are present.

Estimating the per-cluster average BRDF. We now derive
the formula to estimate the per-cluster average BRDF based
on the BRDF sample count. Assume that among a total of
Nρ BRDF samples, Nk

ρ of them have intersected with cluster
Ck. Analytically the average of fr over Ck is computed as:

〈ρk〉=
1

Ωk

∫
Ck

fr(ω)dω (6)

where Ωk is the total solid angle subtended by the cluster.
For distant illumination, Ωk is simply |Ck| · 4π

|S| . For local il-
lumination, however, the shape of the cluster is not clearly
defined, so estimating Ωk is non-trivial. We use a simple
heuristic by treating the cluster as a distant, planar patch per-
pendicular to the ray direction, thus Ωk = Ak

r2 , where Ak is
the total surface area of the cluster, and r is the distance be-
tween the representative light of cluster k to surface point
xo. We clamp this value to an upper limit to avoid significant
overestimation as r could be arbitrarily small.

Next, to evaluate
∫
Ck

fr(ω)dω, we note that each BRDF
sample, due to importance sampling, contributes equally
to the integral (or more intuitively, each sample represents
a reflected photon with statistically equal amount of en-
ergy). Therefore, the per-sample contribution to the integral
is 1

Nρ

∫
H2 fr(ω)dω, meaning each sample shares 1

Nρ
of the

integral of fr over the entire hemisphere H2. Assuming that
the BRDF is normalized (

∫
H2 fr = 1), we have:∫

Ck

fr(ω)dω = Nk
ρ ·

1
Nρ

∫
H2

fr(ω)dω =
Nk

ρ

Nρ

(7)

As predicted, this integral is proportional to the BRDF sam-
ple count Nk

ρ stored at each cluster. Now, putting Eq 6, 7, and
the estimated Ωk together, we have:

〈ρk〉=
r2 Nk

ρ

Ak Nρ

(8)

Separating diffuse and specular BRDFs. Our BRDF es-
timation works more efficiently for highly specular BRDFs
than those close to diffuse. This is because diffuse BRDFs
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(a) Illumination (b) BRDF (c) Bidirectional

Figure 3: Visualize distributed samples. Note how bidirec-
tional sampling combines the importance in both L and fr.

scatter photon energies more widely toward all directions,
therefore with a limited number of BRDF importance sam-
ples, many clusters may end up getting no samples at all.
As a result, the BRDF estimation becomes unreliable. This
could be improved by casting more BRDF samples, but at
the cost of more expensive computation.

To this end, we use a hybrid approach that separates
the treatment of diffuse and specular BRDFs. For specu-
lar BRDFs, we use the method described above to estimate
〈ρk〉. For diffuse BRDFs, on the other hand, we simply as-
sign a constant term to each cluster, representing the diffuse
energy. This is in fact equivalent to the single sample per-
cluster BRDF estimation, which should generally be used
when low-frequency BRDFs are present. Since a BRDF con-
tains both specular and diffuse components, we combine the
two estimates and derive:

〈ρk〉=

(
|ks| ·

r2 Nk
ρ

Ak Nρ

+ |kd |

)
cos(θk

i ) (9)

where ks and kd are the specular and diffuse reflectance pa-
rameters. The term cos(θk

i ) accounts for the incident cosine,
where θ

k
i is the angle between a cluster’s representative light

with the normal at a surface point xo.

3.4. Summary

As a quick summary, to compute the bidirectional sampling
distribution, we go through every node on the illumination
cut, multiply its value by the BRDF importance estimated
using Eq 9, then use the resulting cut as a new PDF to
draw visibility samples. All together, the joint probability
for drawing a sample is:

p(xs)∼ |Ck|〈lk〉〈ρk〉 ·
1
|Ck|

= 〈lk〉〈ρk〉

This effectively accounts for the importance in both illumi-
nation and BRDF.

Comparison with SIR. Our method is closely related to the
sampling importance resampling (SIR) approach [BGH05]:
our illumination clusters are analogous to the initial samples
Xi in SIR, which are drawn from one distribution L(x); and
the BRDF estimation is analogous to re-weighting Xi to ap-
proximate the joint distribution. However, one major differ-
ence is that our final samples are not selected from the initial

set Xi; instead, they are drawn from the full set of samples
by using the joint distribution. Therefore our method is less
biased toward the initial distribution L.

To understand the difference, consider the case where SIR
draws initial samples from the illumination L, but the BRDF
contains a very sharp peak. If the initial sample set is not suf-
ficiently large, the probability that any sample will catch the
peak is quite low. As a result, the final samples, selected from
the initial set, are unlikely to catch the peak either, resulting
in high variance. In our method, due to the use of BRDF im-
portance sampling, the high peaks of BRDF are guaranteed
to be caught by some illumination clusters, and hence the im-
portance values of those clusters will be weighted up. Con-
sequently, the final samples will be distributed more within
those clusters, resulting in reduced sampling variance. Sec-
tion 5 provides examples that demonstrate the improvement.

4. Implementation Details

Generating point lights for illumination. Our first step in
rendering is to convert illumination to point lights. Details of
this step can be found in [AUW07]. For environment light-
ing, we generate samples on the unit sphere, and for local or
indirect lighting, we distribute illumination samples over the
scene surface. In both cases we start with random point sam-
pling followed by a repulsion algorithm to distribute points
evenly. We follow previous work by choosing |S| = 32K
points, although it’s possible for our algorithm to handle a
much larger point set.

Computing illumination cut. Our next step is to build a
light tree from the point lights by using hierarchical cluster-
ing. As long as the geometry of the source remains the same,
we do not have to recompute the light tree. The intensities of
the point lights can change arbitrarily. To compute an illumi-
nation cut, we sample the source radiance L at each frame for
all point lights. This is done by either sampling from an en-
vironment map, or using a GPU shadow mapper to compute
direct lighting at every point. The selection of cut follows
the algorithm described in Section 3.2. We typically use a
per-cluster L2 metric to constrain the approximation error,
and set σ = 5.0 in Eq 5. This results in an illumination cut of
size between 300∼ 1000 depending on the actual lighting.

Generating the primary pixel buffer. To reduce the cost
of rendering, we use GPU rasterization to generate primary
pixels. At each frame we use deferred shading to generate
a deep frame buffer which stores the position, normal, and
all BRDF parameters that are needed for shading. Using de-
ferred shading makes it easy to apply per-pixel effects such
as bump mapping and spatially varying BRDFs.

Computing bidirectional sampling distribution. As de-
scribed in Section 3.3, the bidirectional sampling distribu-
tion is constructed by starting from the illumination cut, and
multiplying the luminance value stored at each cut node by
an estimate of the average BRDF value. To do so, we need to
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first send Nρ = 64 sample rays centered at each primary pixel
using BRDF importance sampling. We then use the BVH
naturally imposed by the light tree to detect the intersection
of the sample ray with cut nodes. Note that the ray may in-
tersect with more than one node. Finally, we use the sample
count at each node and Eq 9 to estimate the average BRDF.

Final shading. To sample from the bidirectional distribu-
tion, we treat the updated cut as a discrete PDF and draw
samples from it. Once a cut node is selected, we randomly
pick a leaf node from the cluster since all leaf nodes within
the cluster represent equal importance. Next, we look up the
source radiance at the selected sample, perform a BRDF
evaluation, and use ray tracing to compute visibility. The
triple product of L, fr, and V is then accumulated to the
image buffer as this sample’s contribution to the shading.
For simple scenes without much occlusion, we found that as
few as N = 32 pixel samples is sufficient to produce high-
quality images. For complex scenes, however, at least 128
pixel samples is needed to eliminate significant image noise.

5. Results and Discussion

Testing environment. Our tests are performed on a Intel
Xeon Quad-Core 2.0 GHz computer with an NVIDIA 8800
GTX graphics card. The steps that generate primary pixel
buffers, sample source radiance, build the light tree, and
compute shadow mapping are all performed on the GPU.
This part of the overhead is negligible compared to the re-
maining processing, therefore in the following we only re-
port the time it takes to construct the bidirectional sampling
distribution and perform the final rendering. Our programs
are compiled with Intel Compiler v10.1. We use an unopti-
mized ray tracer for visibility sampling, and utilize all four
cores of the CPU to parallelize the computation. All images
are rendered at a default resolution of 640×480.

Test scenes. We have constructed five test scenes: we use
the Hebe and Car scenes to test environment lighting, Box
and Plate to test local projected lighting, and Bedroom to
test indirect lighting (where the direct lighting is a point
source). The projected lighting is created by casting a spot-
light or HDR projective texture onto an arbitrary portion of
the scene. The area under projection indirectly illuminate
the rest of the scene. Implementation wise, it is handled in
the same manner with indirect lighting, where point lights
are distributed over the scene surfaces ahead of time, and
are used to sample the direct illumination at run-time. The
BRDFs used in each example vary from diffuse to Phong
with the exponent parameter up to 100. The Plate scene uses
an anisotropic Phong model.

Ground truth images. Our ground truth images are gen-
erated by summing up the illumination contribution from all
32K point lights in a brute-force way. We could also use a
standard Monte Carlo ray tracer to provide reference images.
However, since our method draws samples within the 32K

Scene Faces L Type Cut Samples Time
Hebe 64 K Env. 420 32 10 s
Car 30 K Env. 648 128 28 s
Box 20 K Proj. 267 128 27 s
Plate 1 K Proj. 492 128 29 s
Bed 95 K Ind. 986 256 69 s

Figure 4: Test profiles. The columns list the number of faces
of each scene, illumination type, illumination cut size, pixels
samples used for final rendering, and rendering time.

point lights, and converting the illumination to point lights
itself introduces some bias, we feel that the ground truth
computed our way provides a better base for comparison.

Quality and performance. In figure 5 we show compar-
isons of rendering quality by using illumination importance
sampling, BRDF importance sampling, and our bidirectional
importance sampling respectively. We carefully set the num-
ber of pixel samples in each case such that the total computa-
tion time for each is approximately the same. All images are
computed at 640×480 resolution (except the Hebe scene is
at 480× 640 resolution). Note that the illumination impor-
tance sampling is often 2∼ 3 times faster than the other two
choices, because no BRDF evaluation is required. However,
in the presence of glossy BRDFs, purely illumination based
sampling converges very slowly. Even with a large number
of pixel samples, it still has difficulties matching the quality
of bidirectional sampling. Pure BRDF importance sampling,
on the other hand, face efficiency problems when the scene
contains smooth BRDFs but high-frequency lighting. This
can be seen from several examples we provided, particularly
in the diffuse ground floor at each example.

In Figure 7 we show the bedroom scene with one bounce
of indirect lighting. The direct lighting comes from a single
point light and is computed on the GPU. The global illumi-
nation of this scene is dominated by indirect lighting. Again,
the first three columns are computed in approximately the
same time. From the insets of the second row (indirect light-
ing), we can clearly see the advantage of using bidirectional
importance sampling. A summary of all scenes and the per-
formance data can be found in Figure 4.

Sample distribution. To understand how the importance
function affects the distribution of samples, we visualize the
sampling result in Figure 3. This result is generated for a sin-
gle pixel placed at the center of a plane under environment
lighting. An anisotropic Phong BRDF is used for BRDF
sampling. As seen from the figure, bidirectional importance
sampling draws samples according to the joint distribution
of the illumination and BRDF, while the other two examples
draw samples only from a single distribution.

Comparison with SIR. Figure 8 shows a comparison of
our method with SIR [BGH05, TCE05]. We implement SIR
as follows: we first draw M = 800 initial samples Xi from
all 32K point lights according to illumination importance;
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(a) Illumination, N=160, 10s (b) BRDF, N=40, 10s (c) Bidirectional, N=32, 10s (d) Bidirectional, N=160, 25s

(e) Illumination, N=256, 27s (f) BRDF, N=128, 28s (g) Bidirectional, N=128, 28s

(h) Illumination, N=240, 27s (i) BRDF, N=128, 27s (j) Bidirectional, N=128, 27s

(k) Illumination, N=260, 28s (l) BRDF, N=128, 27s (m) Bidirectional, N=128, 29s

Figure 5: Comparison of illumination importance sampling, BRDF importance sampling, and our bidirectional importance
sampling. Each set of images is computed at approximately the same time. N is the number of pixel samples used in final
rendering. Note that illumination importance sampling performs poorly when material is highly glossy, and BRDF importance
sampling performs poorly when material is diffuse. In contrast, bidirectional sampling gives better results in both cases.
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Illumination BRDF Bidirectional Reference

Figure 6: Blow-up images from Figure 5. The first three
columns in each set are computed at the same amount of
time, and the last column shows reference images computed
using a brute-force approach.

we then evaluate the BRDF (with the incident cosine term)
at these samples, and draw N = 32 final samples from them
using the evaluated BRDF values. To compare, we use our
method to generate an illumination cut of equal size 800,
then draws 32 final samples after the cut is updated with per-
cluster BRDF average.

In the first example (Car), the illumination comes primar-
ily from the top, causing SIR to distribute initial samples Xi
mainly in that area. Because SIR selects final samples from
Xi, it leads to significant noise at pixels on the side of the
car, as most samples in Xi do not contribute to those pix-
els. With our method, while the illumination cut does de-
vote more clusters to the top area, the clusters on the side
receive more BRDF importance samples in this case. Con-
sequently, the final samples are distributed more efficiently
towards those clusters and the sampling variance is reduced.
The second example (Hebe) includes a very glossy BRDF
(Phong with exponent 100). This causes similar problems
for SIR, as the initial set Xi is blind to the high peaks of the
BRDF. Note that in both examples, due to the large num-
ber of BRDF evaluations (800/pixel), SIR performs slightly
worse than our method.

6. Conclusion and Future Work

In summary, this paper presents a new method for bidirec-
tional importance sampling of unstructured illumination. We
combine an illumination cut with BRDF importance sam-

(a) SIR, M = 800, N = 32, 960×480 image, 30s

(b) Ours, |Lc| = 800, N = 32, 960×480 image, 26s

(c) SIR, 400×600 res., 8s (d) Ours, 400×600 res., 7s

Figure 8: Comparison of SIR with our method.

pling to efficiently compute a bidirectional importance sam-
pling function. As a main advance over previous work, our
method allows for unstructured light sources. In our current
system, we found that sampling and evaluating BRDF on the
CPU take a great amount of time. Therefore in the future we
would like to exploit the GPU to accelerate this computation.
Eventually by having an efficient GPU ray tracer, we can
move the entire pipeline to the GPU. In addition, we would
like to explore the use of our approach in other illumination
effects such as subsurface scattering. Finally, the ideas from
this paper may be combined with other work, such as the
Lightcuts, to provide a more efficient BRDF estimate.
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(a) Illumination, N=320, 70s (b) BRDF, N=256, 68s (c) Bidirectional, N=256, 69s (d) Reference

Figure 7: The bedroom scene. Only the indirect illumination component is shown. The direct lighting comes from a point light.
The change in image noise can be clearly seen from the insets.
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