
This work is about a new method for generating diffusion curve style images. 
Although this topic is dealing with non-photorealistic rendering, as you will 
see our underlying solution is based on two-dimensional ray tracing on the 
GPU, and it is analogous to computing final gathering in global illumination 
problems. 



Diffusion curves is a vector-based image representation that can be used to 
easily create smooth-shaded images. Here, each curve is defined with 
generally different colors on each side; given a set of such curves, an image 
can be computed by simulating the diffusion of the curve colors into the 
interior of the image. Due to the diffusion process, the regions between 
curves are typically very smooth; and the curves themselves serve as diffusion 
boundaries which can be used to define edges, highlights, or other image 
features. 



The standard way to compute a solution image is by solving a Poisson 
equation, more specifically a Laplace equation, which simulates the diffusion 
process. The way this works is that it solves for an image f whose Laplacian is 
zero everywhere except on the curve boundaries, where the Laplacian is equal 
to the divergence of the color gradient. Because diffusion curves provide an 
easy way to generate and manipulate smooth images, it has inspired many 
recent work which try to improve its speed and functionality. 



However, the underlying solution in these works is still based on solving the 
Poisson equation, and this type of approach has several limitations. First, it 
requires rasterizing the curves into pixels that will be used as the source of 
diffusion. But curve rasterization is prone to aliasing artifacts. Second, the 
Poisson solver requires computing a global solution, which means all image 
pixels have to be solved at once. This is not friendly to local or view-
dependent computation needs. Finally, the Poisson-based approach also lacks 
seamless integration with classic vector and raster graphics tools, such as 
gradient fills and texture fills. These are the tools that artists are already 
familiar with. But in order to use them in a diffusion curves framework, they 
would either have to be redefined or created on a different layer and 
composited afterwards. And this issue is because diffusion curves require a 
gradient vector field, which is fundamentally different from how the other 
tools are represented. 



Our main contribution is a raytracing based approach that is aimed to address 
the above limitations. First, it is based on ray tracing analytic curves and hence 
it does not require curve rasterization. Second, it can be computed 
ƛƴŘŜǇŜƴŘŜƴǘƭȅ ŦƻǊ ŀƴȅ ǎŜǘ ƻŦ ǇƛȄŜƭǎΣ ǎƻ ƛǘΩǎ ǾŜǊȅ ǎǳƛǘŀōƭŜ ŦƻǊ ƭƻŎŀƭ ƻǊ ǾƛŜǿ-
dependent computation needs. And finally, it seamlessly integrate diffusion 
curves with classic vector and raster graphics tools through the use of shaders, 
which I will describe shortly. This makes it easy to create different image 
effects all in a single layer using familiar operations. 



This example demonstrates the effect of textures and gradient fills. In the left 
image, curves are defined only with colors, and this is what standard diffusion 
curves would output. The right image is our results that contains more 
interesting details, such as the textures on the owl, and the radial gradient fills 
on the glow of the moon and also the sky background.  



This video shows the sketching session that created the owl image. The video 
has been sped up so you can see the entire process. The user starts by 
drawing the curves and assigning colors as in standard diffusion curves; then 
textures are attached to the curves to define the rendering details; and finally 
radial gradient fills are added to simulate the glow of the moon as well as on 
the background sky.  
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So what inspired this work is the idea that the solution to the Laplace 
equation can be converted into a much simpler and direct form. This idea was 
first introduced in a paper by Farbman et al. in the context of image cloning. 
They made a clever observation that the solution to the Laplace equation can 
be approximated by an interpolation from the boundary values using the 
mean-value coordinates, and this is a much more direct way to compute the 
result than solving a differential equation. 



This method can be extended to diffusion curves and is the key of our work. 
And here is an intuitive explanation: to compute the color of this pixel >>>> in 
the resulting image, instead of solving a Poisson equation, we can directly 
interpolate it from the colors of nearby, unoccluded curves.  



In fact, this idea has been applied in the context of diffusion surfaces, which is 
an extension of diffusion curves to smooth shaded 3D textures. The biggest 
difference in their approach with ours is that they use rasterization instead of 
raytracing to solve the problem. Specifically, they project these colored 
surfaces to a rasterization buffer at each shading pixel, from which they can 
then compute the interpolated color.  



You may be wondering, ok, rasterization ǎƻǳƴŘǎ ƭƛƪŜ ŀ ŦŀǎǘŜǊ ŀǇǇǊƻŀŎƘΦ .ǳǘ ƛǘΩǎ 
ŀŎǘǳŀƭƭȅ ƴƻǘ ǘƘŜ ŎŀǎŜ ŀǎ ǿŜΩǾŜ ǘŜǎǘŜŘΦ Lǘ ǘǳǊƴǎ ƻǳǘ ǘƘŀǘ ŦƻǊ ŘƛŦŦǳǎƛƻƴ ŎǳǊǾŜǎΣ 
using ray tracing provides several clear benefits. The first is the performance, 
which sounds a bit counter-ƛƴǘǳƛǘƛǾŜΦ .ǳǘ ǿƘŀǘΩǎ ƘŀǇǇŜƴƛƴƎ ƘŜǊŜ ƛǎ ǘƘŀǘ ǘƘŜ 
number of curve segments is much larger than the resolution of the 
rasterization buffer, and therefore this is a case where raytracing will win in 
terms of speed. The second benefit is that using raytracing allows for arbitrary 
curve attributes such as transparency, which will be much more difficult to 
achieve with rasterization. And finally raytracing makes it easy to achieve 
image anti-aliasing by using spatial stochastic sampling, while using 
rasterization cannot get this benefit. 
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¢ƻ ōŜƎƛƴΣ ƭŜǘΩǎ ŀǎǎǳƳŜ ǘƘŀǘ ŀ ŎǳǊǾŜ is defined with colors on each side. Given a 
set of such curves, we define the color of a shading pixel p as the directional 
integral over the visible curves. Specifically, imagine we shoot a ray >>>> from 
Ǉ ǘƻǿŀǊŘǎ ǘƘŜ ŘƛǊŜŎǘƛƻƴ ǘƘŜǘŀΣ ŀƴŘ ǘƘƛǎ ǊŀȅΩǎ ŎƭƻǎŜǎǘ ƛƴǘŜǊǎŜŎǘƛƻƴ Ǉƻƛƴǘ ƛǎ ȄƛΦ ²Ŝ 
then obtain the color of xi along the curve, and multiply it with a normalized 
weight to define the contribution of this ray. Finally, >>>>> we integrate the 
contributions of all rays from 0 to 2pi, and the result gives the color of p. As 
you can see, this definition is very much like treating the curves as light 
sources that emit radiance, and the integration is performed in the same 
fashion as final gathering, which can be evaluated using stochastic ray tracing. 



Since we use ray tracing, the computation naturally accounts for occlusion. 
This way, the influence of a curve will not cross the boundary of other curves, 
which is what we have wanted.  

 



The weighting function w defines how the curve will influence its nearby 
space. It typically has to do with the distance between the intersection point 
and the shading pixel, but can include other factors as well. In a very special 
case, the integral can actually be analytically computed using mean-value 
interpolation. The special case has to satisfy three conditions: first, the 
weighting function is inversely proportional to distance; second, occlusion 
between curves must be ignored; third, colors are linearly interpolated along 
the curve. In the general case, however, the integral has no analytic solution 
and must be numerically computed. 

 


