
This work is about a new method for generating diffusion curve style images.
Although this topic is dealing with non-photorealistic rendering, as you will
see our underlying solution is based on two-dimensional ray tracing on the
GPU, and it is analogous to computing final gathering in global illumination
problems.

Diffusion curves is a vector-based image representation that can be used to
easily create smooth-shaded images. Here, each curve is defined with
generally different colors on each side; given a set of such curves, an image
can be computed by simulating the diffusion of the curve colors into the
interior of the image. Due to the diffusion process, the regions between
curves are typically very smooth; and the curves themselves serve as diffusion
boundaries which can be used to define edges, highlights, or other image
features.

The standard way to compute a solution image is by solving a Poisson
equation, more specifically a Laplace equation, which simulates the diffusion
process. The way this works is that it solves for an image f whose Laplacian is
zero everywhere except on the curve boundaries, where the Laplacian is equal
to the divergence of the color gradient. Because diffusion curves provide an
easy way to generate and manipulate smooth images, it has inspired many
recent work which try to improve its speed and functionality.

However, the underlying solution in these works is still based on solving the
Poisson equation, and this type of approach has several limitations. First, it
requires rasterizing the curves into pixels that will be used as the source of
diffusion. But curve rasterization is prone to aliasing artifacts. Second, the
Poisson solver requires computing a global solution, which means all image
pixels have to be solved at once. This is not friendly to local or view-
dependent computation needs. Finally, the Poisson-based approach also lacks
seamless integration with classic vector and raster graphics tools, such as
gradient fills and texture fills. These are the tools that artists are already
familiar with. But in order to use them in a diffusion curves framework, they
would either have to be redefined or created on a different layer and
composited afterwards. And this issue is because diffusion curves require a
gradient vector field, which is fundamentally different from how the other
tools are represented.

Our main contribution is a raytracing based approach that is aimed to address
the above limitations. First, it is based on ray tracing analytic curves and hence
it does not require curve rasterization. Second, it can be computed
independently for any set of pixels, so it’s very suitable for local or view-
dependent computation needs. And finally, it seamlessly integrate diffusion
curves with classic vector and raster graphics tools through the use of shaders,
which I will describe shortly. This makes it easy to create different image
effects all in a single layer using familiar operations.

This example demonstrates the effect of textures and gradient fills. In the left
image, curves are defined only with colors, and this is what standard diffusion
curves would output. The right image is our results that contains more
interesting details, such as the textures on the owl, and the radial gradient fills
on the glow of the moon and also the sky background.

This video shows the sketching session that created the owl image. The video
has been sped up so you can see the entire process. The user starts by
drawing the curves and assigning colors as in standard diffusion curves; then
textures are attached to the curves to define the rendering details; and finally
radial gradient fills are added to simulate the glow of the moon as well as on
the background sky.

4:30 here

So what inspired this work is the idea that the solution to the Laplace
equation can be converted into a much simpler and direct form. This idea was
first introduced in a paper by Farbman et al. in the context of image cloning.
They made a clever observation that the solution to the Laplace equation can
be approximated by an interpolation from the boundary values using the
mean-value coordinates, and this is a much more direct way to compute the
result than solving a differential equation.

This method can be extended to diffusion curves and is the key of our work.
And here is an intuitive explanation: to compute the color of this pixel >>>> in
the resulting image, instead of solving a Poisson equation, we can directly
interpolate it from the colors of nearby, unoccluded curves.

In fact, this idea has been applied in the context of diffusion surfaces, which is
an extension of diffusion curves to smooth shaded 3D textures. The biggest
difference in their approach with ours is that they use rasterization instead of
raytracing to solve the problem. Specifically, they project these colored
surfaces to a rasterization buffer at each shading pixel, from which they can
then compute the interpolated color.

You may be wondering, ok, rasterization sounds like a faster approach. But it’s
actually not the case as we’ve tested. It turns out that for diffusion curves,
using ray tracing provides several clear benefits. The first is the performance,
which sounds a bit counter-intuitive. But what’s happening here is that the
number of curve segments is much larger than the resolution of the
rasterization buffer, and therefore this is a case where raytracing will win in
terms of speed. The second benefit is that using raytracing allows for arbitrary
curve attributes such as transparency, which will be much more difficult to
achieve with rasterization. And finally raytracing makes it easy to achieve
image anti-aliasing by using spatial stochastic sampling, while using
rasterization cannot get this benefit.

7:30 here

To begin, let’s assume that a curve is defined with colors on each side. Given a
set of such curves, we define the color of a shading pixel p as the directional
integral over the visible curves. Specifically, imagine we shoot a ray >>>> from
p towards the direction theta, and this ray’s closest intersection point is xi. We
then obtain the color of xi along the curve, and multiply it with a normalized
weight to define the contribution of this ray. Finally, >>>>> we integrate the
contributions of all rays from 0 to 2pi, and the result gives the color of p. As
you can see, this definition is very much like treating the curves as light
sources that emit radiance, and the integration is performed in the same
fashion as final gathering, which can be evaluated using stochastic ray tracing.

Since we use ray tracing, the computation naturally accounts for occlusion.
This way, the influence of a curve will not cross the boundary of other curves,
which is what we have wanted.

The weighting function w defines how the curve will influence its nearby
space. It typically has to do with the distance between the intersection point
and the shading pixel, but can include other factors as well. In a very special
case, the integral can actually be analytically computed using mean-value
interpolation. The special case has to satisfy three conditions: first, the
weighting function is inversely proportional to distance; second, occlusion
between curves must be ignored; third, colors are linearly interpolated along
the curve. In the general case, however, the integral has no analytic solution
and must be numerically computed.

Given the basic raytracing formulation, we can now extend the color L to a
more general concept called shaders. I will describe three types of shaders.

The first is a color shader, which is equivalent to standard diffusion curves.
Here a color is defined at each vertex, and when a ray hits the curve, the color
of the hit point is linearly interpolated from the two nearby vertices.

The second shader is the gradient fill shader. Examples include linear, radial, or
angular fills. To define such a shader, the user specifies two control points,
each with a different color, and also specifies the type of gradient fill
operation.

When a ray hits the curve, the color of the intersection point is calculated
based on the location of the pixel p relative to the two control points. Notice
that this is different from the previous shader in that the color is not defined
along the curve, rather, it is decided by the two control points. As a result,
>>>> any ray starting from the same pixel and hitting the same curve will
return the same color. However, the curve >>>>> does serve as a boundary to
confine the influence of the gradient fill to only one side of the curve.

Here are two examples of the gradient fill shader. They are defined by the
same two control points but one is a linear gradient fill and the other is a
radial gradient fill. Other gradient fill operators can be included as well, such
as procedually defined operators.

The third shader is the texture shader. It is defined in a similar way with
gradient fill shader. Specifically, the user provides two anchor points that
define the texture region.

When a ray hits the curve, the color of the intersection point is returned by a
lookup in the texture using p’s coordinates relative to the two anchor points.
This will give a shading result like this >>>>

Here is another example. Here, each side of the curve is attached with a
different texture shader.

Now, the power of our approach is that it allows all three types of shaders to
appear in a single layer and intersect with each other through the weighted
integral. Here we show a pipe image that’s defined using all three shaders. For
instance, the glow in the pipe is defined with a radial gradient fill shader, the
pipe’s body is defined with texture shaders, and the highlights are defined
with color shaders.

Antialiasing??

Now let me describe the weighting function w, which can be used to
customize the influence of each curve. The weighting function is currently
defined as the product of two weights.

The first is a relative curve weight wc, controls the influence of a curve relative
to other curves. By default, every curve is given a weight of 1, so that they all
count equally. By changing the weight of a curve to zero, we are essentially
ignoring this curve and its nearby region is completely determined by other
curves. This is equivalent to what’s known as a barrier curve in previous work.

This video clip shows adjusting the weight of the golden curve from 1 to 0 and
then back.

The second component of the weighting function is a distance-based weight,
which is defined as the negative p-th power of the distance between an
intersection point with the shading pixel. This basically controls how quickly
the influence of a curve will fall off over distance. So if p is a small value, the
influence of a curve can go very far; and if p is large, we can see that the
influence of a curve will be increasingly more concentrated around itself.

The last attribute that I will introduce is the curve transparency alpha. This is
basically a concept that’s borrowed from the rendering literature, and it
allows the influence of a curve to penetrate through other curves. This effect
can be achieved by simply allowing the ray to continue >>>>> traveling after
the first intersection point, and the final color of the ray is calculated by an
alpha blending of all the successive intersection points.

Here is an example that shows the effect of transparency. Initially the curve
transparency is disabled. By turning it on and giving all curves a transparency
value of 0.5, we can see that the colors are significantly diffused, giving a
sense of translucency effect.

In practice, we can use transparency to some extent to simulate colored
shadows and color bleeding effects in an image. For example, this image
contains a shadowed region and a back wall, and we have assigned the curves
defining these two regions a nonzero transparency value. Now, when the user
edits the color of the floor from green towards >>>> yellow, the colors inside
the shadow curve and the back wall will change accordingly, which simulate
color shadows and color bleeding effects. This provides a convenient way to
modify the image, without having to edit multiple curves.

Now let me briefly go through implementation details. The entire algorithm is
implemented on the GPU using CUDA and Thrust library. All curves are
defiend as cubic Beizer curves, and images are rendered at 512x512
resolution by default.

The algorithm mainly contains 4 steps. The first step is to subdivide curves
into a set of line segments using a standard subdivision algorithm. This is
mainly for the simplicity of tracing line segments. Alternatively we can also
trace cubic curves directly and avoid subdividing the curves. Assume there are
N line segments, the second step is to build a uniform grid of 4 times N
resolution; then step 3 is to classify line segments to the grid, and finally, we
use the uniform grid to accelerate ray tracing. Specifically, for each pixel we
trace 128 rays where the directions are randomly sampled with stratification,
and the origins are assigned using a 2x2 jittered pattern to provide spatial
antialiasing.

In our experiments, the number of line segments N is typically between 300
to 1000.

Now, because a diffusion curves image is typically smooth in the interior, we
can exploit the spatial coherence to speed up the computation during user
interaction. This is achieved by using a simple 2-stage adaptive sampling
algorithm. In the first stage, we perform sparse sampling on every 8x8 pixel
block, and we trace a reduced number of 64 rays per pixel. For each pixel we
calculate its color and record the shortest intersection distance. Then in stage
2, if a block is found to be sufficiently close to any curve, which we can tell
from the shortest distances of the corner pixels, then every pixel in the block
will be sampled. Otherwise, the pixels in a block will be linearly interpolated
from the corner pixels.

This video shows the adaptive samples generated using the 2-stage algorithm.
As you can see, the sampled pixels are mostly distributed nearby the curves,
and the rest of the image contains only sparsely sampled pixels.

In terms of performance, on an NVIDIA 470 GTX, our adaptive sampling
algorithm can perform at 15-25 fps with acceptable quality. As soon as the
user is inactive for more than a second, the algorithm will start a full frame
rendering which will compute at every pixel in the 512 square image, and with
128 rays. This provides high-quality rendering result at 2-3 fps.

Now I will show some additional results. This is a pinwheel image that I have
shown before. These curves are defined with various shaders including texture
shader, color shader, and a radial gradient fill shader which defines the center
glow. Reproducing this image using standard diffusion curves would be very
difficult, especially center glow because it would require carefully assigning
the colors of multiple curves. In comparison, our method only requires one
single radial gradient fill defined with two control points.

Here we compare the pipe image rendered using our method with the result
obtained using the original diffusion curves. To make this comparison, we
have removed the texture fills and gradient fills since their method does not
support these features. The two images match quite well qualitatively, and the
main differences are on the curve boundaries.

This is another comparison where the input is the Zephyr image from their
paper. Again, the images look qualitatively similar, but on close examination,
we can see some differences in the way that colors are diffused into each
other. In particular, the regions around the eyes contain open curves which
result in noticeable differences.

To study these differences more carefully, we have constructed a simple
example with a curve shaped like the letter b. The first difference we can see
clearly is that at the top end of the curve, the two methods spread colors
differently. Specifically, the Poisson-based approach diffuses the red color all
the way to the left side due to the opening at the top. On the other hand, our
method creates a sharp boundary between the two sides due to the visibility
of the curve. The second difference is that at the other end of the curve,
where the curve slightly crosses itself, the Poisson based approach produces
more pronounced artifacts than our method, as shown in the blow-up view.

Although these differences exist, there is no clear evidence that either
method is inherently better or worse than the other. Sometimes you may
want the behavior of one method, and sometimes the other. These are simply
different options that artists can exploit and get adapted to.

To summarize,

