
This work is about a new method for generating diffusion curve style images. 
Although this topic is dealing with non-photorealistic rendering, as you will 
see our underlying solution is based on two-dimensional ray tracing on the 
GPU, and it is analogous to computing final gathering in global illumination 
problems. 



Diffusion curves is a vector-based image representation that can be used to 
easily create smooth-shaded images. Here, each curve is defined with 
generally different colors on each side; given a set of such curves, an image 
can be computed by simulating the diffusion of the curve colors into the 
interior of the image. Due to the diffusion process, the regions between 
curves are typically very smooth; and the curves themselves serve as diffusion 
boundaries which can be used to define edges, highlights, or other image 
features. 



The standard way to compute a solution image is by solving a Poisson 
equation, more specifically a Laplace equation, which simulates the diffusion 
process. The way this works is that it solves for an image f whose Laplacian is 
zero everywhere except on the curve boundaries, where the Laplacian is equal 
to the divergence of the color gradient. Because diffusion curves provide an 
easy way to generate and manipulate smooth images, it has inspired many 
recent work which try to improve its speed and functionality. 



However, the underlying solution in these works is still based on solving the 
Poisson equation, and this type of approach has several limitations. First, it 
requires rasterizing the curves into pixels that will be used as the source of 
diffusion. But curve rasterization is prone to aliasing artifacts. Second, the 
Poisson solver requires computing a global solution, which means all image 
pixels have to be solved at once. This is not friendly to local or view-
dependent computation needs. Finally, the Poisson-based approach also lacks 
seamless integration with classic vector and raster graphics tools, such as 
gradient fills and texture fills. These are the tools that artists are already 
familiar with. But in order to use them in a diffusion curves framework, they 
would either have to be redefined or created on a different layer and 
composited afterwards. And this issue is because diffusion curves require a 
gradient vector field, which is fundamentally different from how the other 
tools are represented. 



Our main contribution is a raytracing based approach that is aimed to address 
the above limitations. First, it is based on ray tracing analytic curves and hence 
it does not require curve rasterization. Second, it can be computed 
independently for any set of pixels, so it’s very suitable for local or view-
dependent computation needs. And finally, it seamlessly integrate diffusion 
curves with classic vector and raster graphics tools through the use of shaders, 
which I will describe shortly. This makes it easy to create different image 
effects all in a single layer using familiar operations. 



This example demonstrates the effect of textures and gradient fills. In the left 
image, curves are defined only with colors, and this is what standard diffusion 
curves would output. The right image is our results that contains more 
interesting details, such as the textures on the owl, and the radial gradient fills 
on the glow of the moon and also the sky background.  



This video shows the sketching session that created the owl image. The video 
has been sped up so you can see the entire process. The user starts by 
drawing the curves and assigning colors as in standard diffusion curves; then 
textures are attached to the curves to define the rendering details; and finally 
radial gradient fills are added to simulate the glow of the moon as well as on 
the background sky.  

4:30 here 



So what inspired this work is the idea that the solution to the Laplace 
equation can be converted into a much simpler and direct form. This idea was 
first introduced in a paper by Farbman et al. in the context of image cloning. 
They made a clever observation that the solution to the Laplace equation can 
be approximated by an interpolation from the boundary values using the 
mean-value coordinates, and this is a much more direct way to compute the 
result than solving a differential equation. 



This method can be extended to diffusion curves and is the key of our work. 
And here is an intuitive explanation: to compute the color of this pixel >>>> in 
the resulting image, instead of solving a Poisson equation, we can directly 
interpolate it from the colors of nearby, unoccluded curves.  



In fact, this idea has been applied in the context of diffusion surfaces, which is 
an extension of diffusion curves to smooth shaded 3D textures. The biggest 
difference in their approach with ours is that they use rasterization instead of 
raytracing to solve the problem. Specifically, they project these colored 
surfaces to a rasterization buffer at each shading pixel, from which they can 
then compute the interpolated color.  



You may be wondering, ok, rasterization sounds like a faster approach. But it’s 
actually not the case as we’ve tested. It turns out that for diffusion curves, 
using ray tracing provides several clear benefits. The first is the performance, 
which sounds a bit counter-intuitive. But what’s happening here is that the 
number of curve segments is much larger than the resolution of the 
rasterization buffer, and therefore this is a case where raytracing will win in 
terms of speed. The second benefit is that using raytracing allows for arbitrary 
curve attributes such as transparency, which will be much more difficult to 
achieve with rasterization. And finally raytracing makes it easy to achieve 
image anti-aliasing by using spatial stochastic sampling, while using 
rasterization cannot get this benefit. 



7:30 here 



To begin, let’s assume that a curve is defined with colors on each side. Given a 
set of such curves, we define the color of a shading pixel p as the directional 
integral over the visible curves. Specifically, imagine we shoot a ray >>>> from 
p towards the direction theta, and this ray’s closest intersection point is xi. We 
then obtain the color of xi along the curve, and multiply it with a normalized 
weight to define the contribution of this ray. Finally, >>>>> we integrate the 
contributions of all rays from 0 to 2pi, and the result gives the color of p. As 
you can see, this definition is very much like treating the curves as light 
sources that emit radiance, and the integration is performed in the same 
fashion as final gathering, which can be evaluated using stochastic ray tracing. 



Since we use ray tracing, the computation naturally accounts for occlusion. 
This way, the influence of a curve will not cross the boundary of other curves, 
which is what we have wanted.  

 



The weighting function w defines how the curve will influence its nearby 
space. It typically has to do with the distance between the intersection point 
and the shading pixel, but can include other factors as well. In a very special 
case, the integral can actually be analytically computed using mean-value 
interpolation. The special case has to satisfy three conditions: first, the 
weighting function is inversely proportional to distance; second, occlusion 
between curves must be ignored; third, colors are linearly interpolated along 
the curve. In the general case, however, the integral has no analytic solution 
and must be numerically computed. 

 



Given the basic raytracing formulation, we can now extend the color L to a 
more general concept called shaders. I will describe three types of shaders. 



The first is a color shader, which is equivalent to standard diffusion curves. 
Here a color is defined at each vertex, and when a ray hits the curve, the color 
of the hit point is linearly interpolated from the two nearby vertices. 



The second shader is the gradient fill shader. Examples include linear, radial, or 
angular fills. To define such a shader, the user specifies two control points, 
each with a different color, and also specifies the type of gradient fill 
operation. 



When a ray hits the curve, the color of the intersection point is calculated 
based on the location of the pixel p relative to the two control points. Notice 
that this is different from the previous shader in that the color is not defined 
along the curve, rather, it is decided by the two control points. As a result, 
>>>> any ray starting from the same pixel and hitting the same curve will 
return the same color. However, the curve >>>>> does serve as a boundary to 
confine the influence of the gradient fill to only one side of the curve.  



Here are two examples of the gradient fill shader. They are defined by the 
same two control points but one is a linear gradient fill and the other is a 
radial gradient fill. Other gradient fill operators can be included as well, such 
as procedually defined operators. 



The third shader is the texture shader. It is defined in a similar way with 
gradient fill shader. Specifically, the user provides two anchor points that 
define the texture region. 



When a ray hits the curve, the color of the intersection point is returned by a 
lookup in the texture using p’s coordinates relative to the two anchor points. 
This will give a shading result like this >>>> 



Here is another example. Here, each side of the curve is attached with a 
different texture shader. 



Now, the power of our approach is that it allows all three types of shaders to 
appear in a single layer and intersect with each other through the weighted 
integral. Here we show a pipe image that’s defined using all three shaders. For 
instance, the glow in the pipe is defined with a radial gradient fill shader, the 
pipe’s body is defined with texture shaders, and the highlights are defined 
with color shaders.  

 

Antialiasing?? 



Now let me describe the weighting function w, which can be used to 
customize the influence of each curve. The weighting function is currently 
defined as the product of two weights. 



The first is a relative curve weight wc, controls the influence of a curve relative 
to other curves. By default, every curve is given a weight of 1, so that they all 
count equally. By changing the weight of a curve to zero, we are essentially 
ignoring this curve and its nearby region is completely determined by other 
curves. This is equivalent to what’s known as a barrier curve in previous work. 



This video clip shows adjusting the weight of the golden curve from 1 to 0 and 
then back. 



The second component of the weighting function is a distance-based weight, 
which is defined as the negative p-th power of the distance between an 
intersection point with the shading pixel. This basically controls how quickly 
the influence of a curve will fall off over distance. So if p is a small value, the 
influence of a curve can go very far; and if p is large, we can see that the 
influence of a curve will be increasingly more concentrated around itself. 



The last attribute that I will introduce is the curve transparency alpha. This is 
basically a concept that’s borrowed from the rendering literature, and it 
allows the influence of a curve to penetrate through other curves. This effect 
can be achieved by simply allowing the ray to continue >>>>> traveling after 
the first intersection point, and the final color of the ray is calculated by an 
alpha blending of all the successive intersection points.  



Here is an example that shows the effect of transparency. Initially the curve 
transparency is disabled. By turning it on and giving all curves a transparency 
value of 0.5, we can see that the colors are significantly diffused, giving a 
sense of translucency effect.  



In practice, we can use transparency to some extent to simulate colored 
shadows and color bleeding effects in an image. For example, this image 
contains a shadowed region and a back wall, and we have assigned the curves 
defining these two regions a nonzero transparency value. Now, when the user 
edits the color of the floor from green towards >>>> yellow, the colors inside 
the shadow curve and the back wall will change accordingly, which simulate 
color shadows and color bleeding effects. This provides a convenient way to 
modify the image, without having to edit multiple curves. 



Now let me briefly go through implementation details. The entire algorithm is 
implemented on the GPU using CUDA and Thrust library. All curves are 
defiend as cubic Beizer curves, and images are rendered at 512x512 
resolution by default. 



The algorithm mainly contains 4 steps. The first step is to subdivide curves 
into a set of line segments using a standard subdivision algorithm. This is 
mainly for the simplicity of tracing line segments. Alternatively we can also 
trace cubic curves directly and avoid subdividing the curves. Assume there are 
N line segments, the second step is to build a uniform grid of 4 times N 
resolution; then step 3 is to classify line segments to the grid, and finally, we 
use the uniform grid to accelerate ray tracing. Specifically, for each pixel we 
trace 128 rays where the directions are randomly sampled with stratification, 
and the origins are assigned using a 2x2 jittered pattern to provide spatial 
antialiasing.  

 

In our experiments, the number of line segments N is typically between 300 
to 1000. 



Now, because a diffusion curves image is typically smooth in the interior, we 
can exploit the spatial coherence to speed up the computation during user 
interaction. This is achieved by using a simple 2-stage adaptive sampling 
algorithm. In the first stage, we perform sparse sampling on every 8x8 pixel 
block, and we trace a reduced number of 64 rays per pixel. For each pixel we 
calculate its color and record the shortest intersection distance. Then in stage 
2, if a block is found to be sufficiently close to any curve, which we can tell 
from the shortest distances of the corner pixels, then every pixel in the block 
will be sampled. Otherwise, the pixels in a block will be linearly interpolated 
from the corner pixels. 



This video shows the adaptive samples generated using the 2-stage algorithm. 
As you can see, the sampled pixels are mostly distributed nearby the curves, 
and the rest of the image contains only sparsely sampled pixels. 



In terms of performance, on an NVIDIA 470 GTX, our adaptive sampling 
algorithm can perform at 15-25 fps with acceptable quality. As soon as the 
user is inactive for more than a second, the algorithm will start a full frame 
rendering which will compute at every pixel in the 512 square image, and with 
128 rays. This provides high-quality rendering result at 2-3 fps. 



Now I will show some additional results. This is a pinwheel image that I have 
shown before. These curves are defined with various shaders including texture 
shader, color shader, and a radial gradient fill shader which defines the center 
glow. Reproducing this image using standard diffusion curves would be very 
difficult, especially center glow because it would require carefully assigning 
the colors of multiple curves. In comparison, our method only requires one 
single radial gradient fill defined with two control points. 





Here we compare the pipe image rendered using our method with the result 
obtained using the original diffusion curves. To make this comparison, we 
have removed the texture fills and gradient fills since their method does not 
support these features. The two images match quite well qualitatively, and the 
main differences are on the curve boundaries. 



This is another comparison where the input is the Zephyr image from their 
paper. Again, the images look qualitatively similar, but on close examination, 
we can see some differences in the way that colors are diffused into each 
other. In particular, the regions around the eyes contain open curves which 
result in noticeable differences. 



To study these differences more carefully, we have constructed a simple 
example with a curve shaped like the letter b. The first difference we can see 
clearly is that at the top end of the curve, the two methods spread colors 
differently. Specifically, the Poisson-based approach diffuses the red color all 
the way to the left side due to the opening at the top. On the other hand, our 
method creates a sharp boundary between the two sides due to the visibility 
of the curve. The second difference is that at the other end of the curve, 
where the curve slightly crosses itself, the Poisson based approach produces 
more pronounced artifacts than our method, as shown in the blow-up view.  



Although these differences exist, there is no clear evidence that either 
method is inherently better or worse than the other. Sometimes you may 
want the behavior of one method, and sometimes the other. These are simply 
different options that artists can exploit and get adapted to.  



To summarize,  






