JMassAm

A Ray Tracing Approach to Diffusion Curves

John C. Bowers, Jonathan Leahey, and Rui Wang
Univ. of Massachusetts Amherst

This work is about a new method for generating diffusion curve style images.
Although this topic is dealing with ngghotorealistic rendering, as you will

see our underlying solution is based on tdiensional ray tracing on the
GPU, and it is analogous to computing final gathering in global illumination
problems.



JMassAmbers
Introduction

= Diffusion Curves [OBW*08]

* A vector representation that allows for easy creation of
smooth-shaded images.

Diffusion

Diffusion curves is a vecttwased image representation that can be used to
easily create smootishaded images. Here, each curve is defined with

generally different colors on each side; given a set of such curves, an image
can be computed by simulating the diffusion of the curve colors into the
interior of the image. Due to the diffusion process, the regions between

curves are typically very smooth; and the curves themselves serve as diffusion
boundaries which can be used to define edges, highlights, or other image
features.



JMassAmbers
Introduction

* The standard way to compute a diffusion curves image
is by solving a Poisson equation.

i i

=—=+—==0
ox?  Oy?

Ay d
= Recent work on diffusion curves
» Fast Poisson solver [JCW09a]
» Define surface details [JCWO09b]
* Expressive control via diffusion constraints [BEDT10]
* Texture draping [WOBTO09]

3

Thestandard way to compute a solution image is by solving a Poisson
equation, more specifically a Laplace equation, which simulates the diffusion
process. The way this works is that it solves for an image f wieyglacians

zero everywhere except on the curve boundaries, whereltiyglacians equal

to the divergence of the color gradient. Because diffusion curves provide an
easy way to generate and manipulate smooth images, it has inspired many
recent work which try to improve its speed and functionality.



M3

Disadvantages of a Poisson-based Approach

1. Requires curve rasterization
2. Requires computing a global solution
* Not friendly to local/view-dependent computation needs
3. Lack of seamless integration with classic vector and
raster graphics tools
* Examples: gradient fills, texture fills

* Fundamentally due to a different representation (i.e.
requires a gradient vector field).

4

However, the underlying solution in these works is still based on solving the
Poisson equation, and this type of approach has several limitations. First, it
requires rasterizing the curves into pixels that will be used as the source of
diffusion. But curveasterizationis prone to aliasing artifacts. Second, the
Poisson solver requires computing a global solution, which means all image
pixels have to be solved at once. This is not friendly to local or view
dependent computation needs. Finally, the Poisbaised approach also lacks
seamless integration with classic vector and raster graphics tools, such as
gradient fills and texture fills. These are the tools that artists are already
familiar with. But in order to use them in a diffusion curves framework, they
would either have to be redefined or created on a different layer and
composited afterwards. And this issue is because diffusion curves require a
gradient vector field, which is fundamentally different from how the other
tools are represented.




M3
Our Contributions

= A new, raytracing based solution to diffusion curves
with the following advantages:
* Requires no curve rasterization.
* Can be computed independently for any pixel.

« Seamless integration of diffusion curves with classic
vector and raster graphics tools, such as gradient fills and
textures fills.

5

Our main contribution is eaytracingbased approacthat is aimed to address

the above limitations. First, it is based on ray tracing analytic curves and hence
it does not require curveasterization Second, it can be computed
AYRSLISYyRSyidte F2N Iye aSiG 2F LIMESta:x
dependent computation needs. And finally, it seamlessly integrate diffusion
curves with classic vector and raster graphics tools through the usieaclers

which | will describe shortly. This makes it easy to create different image

effects all in a single layer using familiar operations.



JMassAmbers
Example of Texture and Gradient Fills

Standard Diffusion Curves Our Method

Thisexample demonstrates the effect of textures and gradient fills. In the left
image, curves are defined only with colors, and this is what standard diffusion
curves would output. The right image is our results that contains more
interesting details, such as the textures on the owl, and the radial gradient fills
on the glow of the moon and also the sky background.



Demo

This video showthe sketching session that created the owl imagke video

has been sped up so you can see the entire process. The user starts by
drawing the curves and assigning colors as in standard diffusion curves; then
textures are attached to the curves to define the rendering details; and finally
radial gradient fills are added to simulate the glow of the moon as well as on
the background sky.

4:30 here



M5
Related Work

= Mean-Value Coordinates [Flo03, JSWO05]
* Coordinates Image Cloning [FHL*09]

. 0%f 9P
Solve Laplace equation: Af = —j+ B f =0
ef

Mean-value interpolation:  f(x Z f(8) - wmopelx. 1)

8

So what inspired this work is théea that the solution to the Laplace

equation can be converted into a much simpler and direct form. This idea was
first introduced in a paper blyarbmaret al. in the context of image cloning.
They made a clever observation that the solution to the Laplace equation can
be approximated by an interpolation from the boundary values using the
meanvalue coordinates, and this is a much more direct way to compute the
result than solving a differential equation.



JMassAmbers
Related Work

= Mean-Value Coordinates [Flo03, JSWO05]
* Coordinates Image Cloning [FHL*09]

= We apply this idea to diffusion curves:

This methodcan be extended to diffusion curves and is the key of our work.
And here is an intuitive explanation: to compute the color of this pixel >>>> in
the resulting image, instead of solving a Poisson equation, we can directly
interpolate it from the colors of nearbynoccludedcurves.



JMassA
Related Work

= Mean-Value Coordinates [Flo03, JSWO05]
* Coordinates Image Cloning [FHL*09]

* Diffusion Surfaces [TSNI10]
» Compute interpolated colors by using rasterization.

10

In fact, this idea has been applied in the contekdiffusion surfaces, which is
an extension of diffusion curves to smooth shaded 3D textures. The biggest
difference in their approach with ours is that they uasterizationinstead of
raytracingto solve the problem. Specifically, they project these colored
surfaces to aasterizationbuffer at each shading pixel, from which they can
then compute the interpolated color.




JM 355 A org
Related Work

= Mean-Value Coordinates [Flo03, JSWO05]
* Coordinates Image Cloning [FHL*09]
« Diffusion Surfaces [TSNI10]
« Compute interpolated colors by using rasterization.

* Advantages of our method over rasterization:
« Performance benefits of raytracing.
« Allows for arbitrary curve attributes including transparency.

* Easy to achieve anti-aliasing by spatial stochastic sampling.

11

[

You may be wondering, okasterizatiord 2 dzy Ra f A 1S + FFadSNJ |
I Oldz2 tfe& y20 GKS OFLasS a 6SQ@S (SaiSRo
using ray tracing provides several clear benefits. The first is the performance,

which sounds a bit countek y (i dzA G A @S & . dzi g KI Q& KI LIIS
number of curve segments is much larger than the resolution of the
rasterizationbuffer, and therefore this is a case whesg/tracingwill win in

terms of speed. The second benefit is that usagracingallows for arbitrary

curve attributes such as transparency, which will be much more difficult to

achieve withrasterization And finallyraytracingmakes it easy to achieve

image antialiasing by using spatial stochastic sampling, while using
rasterizationcannot get this benefit.



M
Outline

* Raytracing Formulation
* Definition of Shaders
Curve Attributes
Implementation Details
Results

12

7:30here



JMassAmbers
Algorithm Overview

= Raytracing Formation

2n

Ip) = A L(xi(p.0)) w(xi(p.6))d6

p: shading pixel

X! visible curve point
in direction 0

L: curve color

w: normalized weight

13

¢2 0S3AAY:S SO Qasddfiredwdy®lorsidh katsidé. GigedzNID S

set of such curves, we define the color of a shading pixel p as the directional

integral over the visible curves. Specifically, imagine we shoot a ray >>>> from

LJ G261 NRa (GKS RANBOGUAZY GKSOIFX FyR GKA
then obtain the color of xi along the curve, and multiply it with a normalized

weight to define the contribution of this ray. Finally, >>>>> we integrate the
contributions of all rays from 0 to 2pi, and the result gives the color of p. As

you can see, this definition is very much like treating the curves as light

sources that emit radiance, and the integration is performed in the same

fashion as final gathering, which can be evaluated using stochastic ray tracing.



JMassAmbers
Algorithm Overview

= Raytracing Formation

2n
I(p) = : L(x;(p,6)) w(x;(p,0))dd
p: shading pixel
) X visible curve point
Occlusion . . ,
in direction 0
L: curve color
w: normalized weight

14

Since we use ray tracing, the computation naturally accofamtecclusion.
This way, the influence of a curve will not cross the boundary of other curves,
which is what weéhave wanted



The weighting functiomv defines how the curve wilhfluence its nearby

space. It typicallyras to do with the distance between the intersection point
and the shading pixel, but can include other factors as well. In a very special
case, the integral can actually be analytically computed using malae
interpolation. The special case has to satisfy three conditions: first, the
weighting function is inversely proportional to distance; second, occlusion
between curves must be ignored; third, colors are linearly interpolated along
the curve. In the general case, however, the integral has no analytic solution
and must be numerically computed.



