
Volume xx (200y), Number z, pp. 1–9

Hierarchical Upsampling for Fast Image-Based
Depth Estimation

Blake Foster and Rui Wang

University of Massachusetts Amherst

Abstract
We propose a hierarchical upsampling method for dense image-based depth estimation. Given a set of high-
resolution images, we first apply multiview stereopsis on downsampled images to obtain a sparse point cloud in a
few minutes. Our goal is then to combine the original images with the sparse point cloud to recover a dense set of
points. We select a set of reference views, and use joint bilateral upsampling to estimate per-pixel depths in each
view. We then merge the results using estimated confidence values. We greatly improve the computation speed and
robustness by upsampling hierarchically. Our GPU implementation can process high-resolution images at more
than 15 frames per second. We can convert the sparse point cloud into a full scene reconstruction composed of
millions of points in just a few seconds. Our results are robust, and can be used directly in many applications,
including smooth surface reconstruction and depth-of-field simulation.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Depth cues I.4.3 [Image Processing and Computer Vision]: Enhancement—Geometric correction I.3.1
[Computer Graphics]: Hardware architecture—Parallel processing I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

While many stereo vision algorithms can quickly and ro-
bustly estimate sparse geometry from sets of photos, dense
reconstruction remains a time-consuming and memory-
intensive process. In this paper, we introduce an efficient al-
gorithm for rapid 3D estimation from images. Given a set
of high-resolution images, we first run multiview stereop-
sis [FP09] at a low resolution to obtain a sparse point cloud
in a few minutes. This typically reconstructs only 3∼ 5% of
the pixels in any input image. Our goal is then to combine the
original high-resolution images with the sparse point cloud
to estimate a dense reconstruction. Our main contribution is
a hierarchical algorithm that exploits joint bilateral upsam-
pling [KCLU07] to recover dense points.

Our algorithm first computes sparse depth maps for a
small set of reference views by reprojecting the initial 3D
points. We then use joint bilateral upsampling to estimate a
dense depth map for each reference view. We account for
visibility efficiently with a small modification to the stan-
dard bilateral filter weights. Because the initial depth maps
are sparse, directly upsampling would be expensive due to

the necessarily large search radius. We improve the speed
and robustness of this step with a hierarchical approach. We
first downsample each reference view to a lower resolution,
decreasing the sparsity of the projected points. Then we hi-
erarchically upsample the low-resolution depth maps to the
resolution of the original images, filling in holes at each
step. Finally, we merge the results from all the reference
views, guided by estimated confidence values. This provides
a dense reconstruction of the entire scene, composed of up
to several million points.

Once we have the initial set of points, our GPU imple-
mentation can process more than 15 images per second. In
a typical scene, we require no more than a few minutes to
obtain the initial point cloud, and few seconds for upsam-
pling. We show that our results are robust, even with only
two input images. Finally, we apply our algorithm to ma-
nipulate the depth of field in focused images. Given only a
small number of input images, we construct a depth map in
a reference view, and then apply a depth-dependent blur to
simulate a narrow depth of field.

ruiwang
Rectangle



2 Blake Foster and Rui WangUniversity of Massachusetts Amherst / Hierarchical Upsampling for Fast Image-BasedDepth Estimation

2. Related Work

Image-Based Reconstruction. Image-based reconstruc-
tion algorithms have achieved remarkable accuracy in recent
years. Seitz et al. [SCD∗06b] provide a detailed comparison
and evaluation of the state-of-the-art. Most techniques as-
sume calibrated input images. Calibration is typically done
with structure from motion (SfM) [HZ04].

Goesele et al. [GSC∗07] obtain dense depth maps from
community photo collections by intelligently picking images
to match. Like our method, their system attempts to produce
dense geometry from a sparse set of points. Patch-based mul-
tiview stereo (PMVS) [FP09] partitions images into grids
and computes dense point clouds by enforcing local pho-
tometric consistency and global visibility constraints. The
point clouds are often sufficiently dense for point-based ren-
dering. The points are also suitable for smooth mesh com-
putation via Poisson surface reconstruction [KBH06]. These
methods are quite accurate, but producing dense point clouds
can take hours. We gain a substantial speed advantage over
these methods by running multiview stereo on downsampled
images to compute sparse points, which we then upsample
to produce dense geometry. Multiview stereo usually runs in
just a few minutes on our downsampled images, and upsam-
pling requires only a few seconds.

Yang and Pollefeys [YP03] use a GPU-based plane
sweeping algorithm [Col96] to estimate dense depth
maps from a set of stationary video cameras. Gallup et
al. [GFM∗07] use multiple plane orientations to improve
the performance of this approach on non-frontoparallel sur-
faces. Merrell et al. [MAW∗07] introduced a realtime system
for merging rough depth maps obtained via plain-sweeping.
Given sufficiently many views captured in video, their sys-
tem produces excellent results.

Diebel and Thrun [DT05] upsample depth maps by mod-
eling pixel colors and depths with a Markov random field.
Their system requires dense geometry sampled at a low res-
olution.

Recently, Pan et al. [PRD09] presented a modeling system
that reconstructs an object interactively as the user rotates
it front of a Webcam. Their system works well for small
objects with simple geometry, but is not suitable for larger
scenes captured from discrete camera locations.

Bilateral Filter and Upsampling. The bilateral fil-
ter [TM98] is an efficient nonlinear filter that blurs images
while preserving edges and features. The filter weighs each
pixel’s contribution to its neighbors by combining a spa-
tial kernel and a range kernel. Durand and Dorsey [DD02]
applied a fast approximation of the bilateral filter to HDR
tone mapping. Their results were later improved in [Wei06,
PD09]. Yoon and Kweon [YK06] use a metric similar to a
bilateral filter to aggregate window-based support weights
in stereo matching.

Joint bilateral upsampling [KCLU07] produces a high-

resolution depth map from low resolution range data, while
preserving sharp edges in a corresponding high-resolution
image. The input must be a dense depth map, albeit at a
lower resolution. Chan et al. [CBTT08] apply joint bilateral
upsampling to depth maps obtained from active 3D range
sensors. Their main focus is on denoising range data. Dol-
son et al. [DBPT10] use a high dimensional joint bilateral
filter to upsample depth measurements obtained from a laser
scanner in a dynamic scene. They also achieve real-time pro-
cessing speed with their GPU implementation. While these
two methods are similar to ours, they rely on a laser range de-
vice mounted on a video camera to obtain single-view depth
maps. Their depth maps are relatively dense, and implicitly
contain visibility information due to the colocation of the
camera and the rangefinder. In contrast, our hierarchical up-
sampling method works with very sparse points obtained via
stereo vision, and does not require visibility information.

Digital Refocusing. Depth of field manipulation is a pop-
ular artistic effect in photography. Digital refocusing tech-
niques allow a photographer to modify the depth of field af-
ter an image has been captured. Bando and Nishita [BN07]
introduced a single-image refocusing system. Their algo-
rithm first deblurs the input image with a spatially-varying
kernel, and then applies a depth-dependent blur to the sharp
image. They implicitly compute depth values from the defo-
cused input image, guided by some user interaction. Zhang
and Cham [ZC09] take a similar approach, but they use a
probabilistic framework to estimate the defocus map with-
out user interaction. Rajagopalan and Mudenagudi [RM04]
use depth from defocus in conjunction with stereo vision to
estimate dense depthmaps and restore sharp images.

Our refocusing system differs from these methods in that
we do not rely on depth from defocus or single view depth
inference techniques. Instead, we use our algorithm to gener-
ate per-pixel depths from a small number of images, and use
these depth values to compute a depth-dependent blur. While
we could possibly use multiview stereo to obtain the per-
pixel depths, our approach is faster and guarantees a depth
at every pixel.

3. Algorithms

3.1. Multiview Stereopsis

Our algorithm operates on a set of photos taken from cal-
ibrated cameras. In the absence of calibration information,
we use Bundler [SSS06], an open source tool for robust
structure from motion. We compute our initial set of 3D
points with patch-based multiview stereo (PMVS) [FP09].
We configure the PMVS software to downsample the images
to around 300 pixels on the larger dimension. The initial re-
construction typically takes only 1 to 2 minutes for a dataset
with 50 to 100 images. The resulting point cloud provides
depth values for about 3 to 5% of the pixels in each of the
original images image.



Blake Foster and Rui WangUniversity of Massachusetts Amherst / Hierarchical Upsampling for Fast Image-BasedDepth Estimation 3

Figure 1: An image showing a red object in front of a green
object. We wish to recover the depth of pixel p, using color
to guide the interpolation. A neighbor pixel q has a depth
value obtained from an unoccluded background point Q. If
the range kernel is evaluated with R(q), the depth at q will
incorrectly have a high weight. The color of the 3D point Q
provides a more reliable weight because the foreground and
background often have very different colors.

Note that although PMVS can produce dense reconstruc-
tions (e.g. by setting level=0 and csize=1), it usually takes
hours to run, and requires a substantial amount of memory.
Our goal is to provide a simple alternative for dense recon-
struction that runs many times faster and requires far less
memory. Our results are not as accurate as PMVS, but we
have found that the quality is sufficient for many common
applications including point-based rendering, surface recon-
struction, and depth-of-field simulation.

3.2. Joint Bilateral Upsampling

Like [GSC∗07], our algorithm attempts to compute a depth
value for every pixel in a reference view R. We first obtain
a sparse depth map Ds for R by reprojecting the 3D points.
We then exploit the joint information in the corresponding
high-resolution color image to upsample Ds to a dense depth
map Du. While this only covers pixels visible in R, we later
combine the results from multiple views to obtain a full re-
construction.

Our goal is now to compute the depth of each pixel
p ∈ Du. Our method is based on joint bilateral upsampling
[KCLU07]. The joint bilateral filter would compute the the
depth of p as:

Du(p) =
1
kp

∑
q∈Ω

Ds(q) f (‖p−q‖)g(‖R(p)−R(q)‖) (1)

where Ds(q) is the value of pixel q in the sparse depth
map, f is the spatial kernel (typically Gaussian), g is the
range kernel, Ω is the spatial support, and kp is a normal-
ization factor. Intuitively, this computes p’s depth as a sum
of its valid neighbor pixels q ∈ Ω (i.e. those with available
depth values), weighted by both spatial proximity and color
similarity.

Visibility. A naïve upsampling algorithm would use the im-
age colors R(p) and R(q) in the range kernel to compute the

weight for q. While this approach may work in some sit-
uations, it assumes that the depth map contains only fore-
ground points, which is frequently not true. When a back-
ground point appears in the depth map, it can incorrectly
contribute to its neighbor pixels, due to local color similarity
in the image. Figure 1 illustrates this problem.

A simple solution would be to use the visibility informa-
tion provided by PMVS; each 3D point is associated with a
list of views in which it is identified. If we only projected
points marked visible in the reference view, we would elim-
inate any occluded points from the depth map. However, we
have found that in practice, the visibility estimates are far too
conservative. Many truly visible points are discarded, and
the resulting depth map is frequently too sparse to be useful.

We propose a different solution that filters out background
points without relying on any visibility information. The
PMVS software provides a color for each 3D point. We write
these colors to the depth map, so that each valid pixel in Ds
contains the color of the scene point that generated the depth
value. We can then modify the range kernel to use the point
colors in Ds, under the frequently valid assumption that fore-
ground and background objects have different colors. Refer
to Figure 1. We modify the upsampling equation to:

Du(p) =
1
kp

∑
q∈Ω

Ds(q) f (‖p−q‖)g(‖R(p)−Drgb
s (q)‖)

(2)

where Drgb
s (q) is the color of q stored in the depth map.

In practice, there are cases where the foreground and
background objects have similar colors. To make our method
robust in these situations, we make an additional modifi-
cation to filter out occluded points that have colors similar
to the foreground. We first obtain the median depth value
med(p) in the spatial neighborhood Ω around p. We then
introduce a third weight to Eq. 2 computed as:

wz = h(‖med(p)−Ds(q)‖) (3)

We call this a depth kernel. The depth kernel gives higher
weights to neighbor pixels that have depth values close to
the median. This works well in practice, because the depth
buffer resolves the visibility of at least some of the 3D points,
which causes the median depth in a spatial neighborhood to
favor foreground points.

3.3. Hierarchical Upsampling

Many real-world images contain large textureless areas,
where multiview stereo algorithms typically find very few
3D points. While we could handle these areas by simply
increasing the size of the spatial support Ω, our algorithm
would quickly become inefficient. Moreover, if the back-
ground behind a sparse area is sufficiently dense, the back-
ground points will dominate the foreground points despite
our modified weighting scheme. We solve these problems
with a hierarchical approach.



4 Blake Foster and Rui WangUniversity of Massachusetts Amherst / Hierarchical Upsampling for Fast Image-BasedDepth Estimation

Figure 2: Hierarchical upsampling using a Temple model
from [SCD∗06a]. At each level i, the reconstructed depth
map at level Di+1 is upsampled under the guidance of image
Ri to fill in the missing depth values in Di.

First, we generate image pyramids from both the refer-
ence view R and the initial sparse depth map D. We down-
sample R with a 2× 2 box filter. For D, we use a min filter,
so that the downsampled depth maps are equivalent to ras-
terizing the point cloud at lower resolutions.

If pyramid for R has k levels R1, · · · ,Rk, the pyramid for
D has k+1 levels D1, · · · ,Dk+1. Our upsampling filter goes
through k iterations, one for each level of the reference view
pyramid. Starting from i= k, we use the depth values in Di+1

to fill in the missing depth values in Di, guided by the pixel
colors in Ri. Each level proceeds exactly as described in Sec-
tion 3.2.

The ith level of the upsampling filter generates dense
depth values for Di. Since the depth values are the estimated
depths of the visible surface, we use Ri to initialize the col-
ors of the newly interpolated points. The existing points in
Di remain unchanged. The new dense Di is passed to the next
level, until we reach the top of the pyramid, and thus obtain
a full-resolution depth map. Figure 2 shows a schematic of
the algorithm.

In most cases, we get good results by downsampling until
the largest dimension is around 300 pixels. If the initial point
cloud is particularly sparse, we can add an extra level. Since
our method is fast, adjusting the number of downsampling
levels is not time consuming.

3.4. Selecting and Fusing Multiple Views

Since upsampling is fast, we can interactively add more
views until we have a fairly complete reconstruction. Our
set of reference views is typically small (usually fewer than
10), so the upsampling cost for all of them is at most a few
seconds. When processing large datasets, we can apply k-
means clustering on the cameras to automatically select a set

of reference views. We could also use the system presented
in [FCSS10] to cluster the 6-DOF camera poses.

Confidence Values. We assign a confidence value to each
reconstructed 3D point. In the single-level case, we define
the confidence at pixel p to be (~n ·~v)Nq/(2r+1)2, where Nq
is the number of neighborhood pixels that have valid depth
values, r is the radius of the neighborhood Ω,~n is the normal
at p estimated from the dense depth map, and~v is the direc-
tion from the 3D location of p to the camera. The dot product
penalizes points that are visible at large grazing angles; the
fraction Nq/(2r+1)2 penalizes points that are reconstructed
from very sparse neighborhoods.

In the hierarchical case, we compute the confidence values
at the bottom level as described above. Each higher level
then uses the filter weights to blend the confidence values
computed from the previous level. At the top level, we reject
any points that have confidence values below a threshold. We
set the threshold to 0.001 in all our experiments.

Fusing Depth Maps. Each reference view yields a dense
point cloud representing the visible surface. We merge the
depth maps from all the reference views to obtain a full
point cloud. In all of our tests, we obtained satisfactory re-
sults by simply taking the union of these point clouds. Note
that the input points are already globally optimized by mul-
tiview stereopis. Moreover, we usually pick reference views
that have little overlap, so error due to mis-alignment is gen-
erally not noticeable. For more accuracy, we could use our
confidence values in the realtime depthmap-fusion method
presented in [MAW∗07] without significantly decreasing
the speed of our algorithm.

3.5. Implementation Details

GPU Implementation. For each reference view, we first
use an OpenGL shader (with the depth test enabled) to cre-
ate a depth map at the resolution of the original image. We
write the color and depth values to an RGBA texture. We
then build the image pyramids on GPU, as described in Sec-
tion 3.3.

Next, we accelerate joint bilateral upsampling on the GPU
with NVidia’s CUDA. We create one thread per pixel, with
16× 16 blocks. Each thread computes the depth of its cor-
responding pixel. To compute the depth kernel (Eq. 3), a
thread must find the median of all the valid depths in its
neighborhood. Due to memory constraints, we cannot find
the median of every neighborhood simultaneously. However,
for our purpose, an approximation of the median is good
enough. To estimate the median, we first we create a 256-
bin histogram of the valid depth values in each neighbor-
hood. We then linearly scan the histogram to find the bin b
that contains the median. Finally, we estimate the median as
the average of the depth range of b. Once a thread has the
median depth, it searches its neighborhood again, and sums



Blake Foster and Rui WangUniversity of Massachusetts Amherst / Hierarchical Upsampling for Fast Image-BasedDepth Estimation 5

Figure 3: Top: A point cloud computed with our algorithm,
and two views of a smooth surface created using Poisson
surface reconstruction with depth=8. Bottom: the same test
performed on a dense point cloud from PMVS (level=1,
csize=1).

the contribution of each valid neighbor with the sampling
weights (Eq. 2 and 3).

Outlier Rejection. While hierarchical upsampling is quite
robust, some outliers may still exist very close to depth dis-
continuities. We use a simple outlier rejection step to filter
them out. First, we search a small neighborhood around each
pixel p in the dense depth map, and find the pixel q with the
smallest 3D Euclidean distance from p. Because the recon-
struction is dense, we assume that these distances conform to
a Gaussian distribution (with positive x). Under this assump-
tion, we compute the sample standard deviation, and reject
any point that has fewer than n neighbors within k standard
deviations. Typically, we use k = 2, and n = 2∼ 3.

4. Results and Applications

We have evaluated our algorithm on several scenes, captured
both indoors and outside. We performed all our tests on a
PC with an Intel Core i7 920 CPU, 6 GB of RAM, and an
NVIDIA GeForce GTX 280 graphics card. Figure 1 summa-
rizes the results. We compare the running time of our algo-
rithm to the time required to obtain a high-resolution recon-
struction with the open source PMVS software. Our algo-
rithm runs in considerably less time on all datasets. More-
over, our algorithm produces far more 3D points in most
cases.

Temple. We use the temple dataset from [SCD∗06a] to com-
pare the quality of our dense point cloud with a dense recon-
struction from PMVS. This dataset contains 312 images. It
is a challenging case for our algorithm because there is lit-
tle color variation. Nonetheless, we obtain a reasonable re-
construction, with nearly 400,000 points. We generated the

Figure 4: Left: a point cloud created with naïve upsampling
that ignores visibility of the 3D points. Right: our results.

initial sparse point cloud in under 4 minutes with PMVS,
using level=1, csize=2. We ran our algorithm on 6 reference
views. Upsampling took a less than a second. Figure 5 shows
several views of the point cloud. We also used our results
to generate a smooth mesh with Poisson surface reconstruc-
tion [KBH06] at depth=8. Figure 3 shows the reconstructed
surface.

To compare with PMVS, we used their algorithm again
to generate a dense point cloud using level=1, csize=1. The
PMVS software took 22 minutes, and produced 188,000
points. Note that while their point cloud is more accurate
and preserves more details, ours algorithm produced twice
as many points in considerably less time. We also created
a smooth surface from the PMVS points. The reconstructed
surfaces have similar quality. The results are shown in Fig-
ure 3.

Bus. The bus scene (Figure 6) has simple geometry, but it
is non-trivial due to the prominent specular highlights and
large textureless areas. Despite these difficulties, our algo-
rithm recovered an accurate and dense point cloud. To eval-
uate the effectiveness of our upsampling method, we also at-
tempted to reconstruct the bus with a naïve filter that ignored
the visibility and color of the 3D points (Figure 4). While our
algorithm was able to separate foreground from background,
the naïve interpolation blended foreground points on the bus
with background points behind the bus, resulting in a noisy
reconstruction with many holes.

Chapel. The chapel scene (Figure 7) shows a 360◦ recon-
struction. We fused 17 reference views to obtain nearly 4
million points. We also use the chapel scene to demonstrate
the effectiveness of our algorithm at reconstruction from
very few images (Figure 9). We first used Bundler to com-
pute a sparse point cloud from only two of the images. Be-
cause we used only two views, Bundler ran in 30 seconds.
Although the Bundler points provided depths for only 0.1%
of the pixels in each image, our algorithm computed an ac-
curate surface with more than a million points.

Office. The office scene (Figure 8) has many depth-
discontinuities, and multiple depth layers. Our algorithm
performs well despite these difficulties. Note the density of
the point cloud in the closeup image.

Depth-of-field Manipulation. We use our results to digi-
tally modify the depth of field in photographs. We begin by
reconstructing a sparse set of points from a small number of



6 Blake Foster and Rui WangUniversity of Massachusetts Amherst / Hierarchical Upsampling for Fast Image-BasedDepth Estimation

Scene #Photos Res Hierarchical Upsampling PMVS low res. PMVS high res.
#Views #Points Time Levels Cell Size #Points Time Levels Cell Size #Points Time

Temple 312 640× 480 6 379k 0.55 s 1 2 12k 232 s 1 1 188k 22 m
Bus 62 1200× 800 1 410k 0.37 s 2 3 14k 84 s 1 1 687k 37 m

Office 21 1600× 1067 5 3,059k 5.61 s 2 2 44k 87 s 1 1 710k 26 m
Chapel1 132 1024× 683 17 3,915k 3.58 s 2 2 60k 145 s 1 1 1,171k 32 m
Chapel2 2 1280× 960 2 1,406k 0.99 s – – – – – – – –

Table 1: A summary of our test datasets. For each dataset, we list the number of original photos and the image resolution.
Next, we list the number of reference views used by our algorithm, the number of 3D points produced, and the running time
for upsampling. The last 8 columns show the performance of PMVS. We summarize the low-resolution reconstructions that
provided our initial points first, followed by high-resolution reconstructions for comparison. In each case, we list the number
of subdivision levels, the cell size, the number of 3D points, and the running time. Because the last dataset only contains two
views, did not run PMVS.

images. We then use our algorithm to obtain per-pixel depths
in the image to be refocused. Finally, we blur the image with
a spatially-varying Gaussian filter, where the variance is a
function of the depth value. We accelerate the blur on the
GPU, which allows the user to change the depth of field in-
teractively. We refocused several images taken from a tall
building (Figure 10). In each example, we simulate a narrow
depth of field to create a miniature model effect. Figures 11
and 12 show refocused images of an office scene and a toy
house, respectively.

Figure 10: We use our depth maps to digitally modify the
depth-of-field in photographs, creating a miniature-faking
effect. Zoom in to see the details in the images.

Limitations and Future Work. At present, our algorithm
requires a sparse set of depth values to seed the reconstruc-
tion. We could possibly use the massive parallelism of the
GPU to find feature correspondences in areas where there
are not enough initial depth values to estimate the depthmap
accurately. Plane-sweeping has already been applied to real-
time stereo [GFM∗07]. While the results are usually noisy,
we could keep only the most consistent points from a plane-
sweeping algorithm and use our system to fill in the details.
With such a system, we could use a calibrated stereo cam-
era to recover depth from video without relying on multiple
frames to eliminate noise.

Our algorithm performed well on all of our datasets with
only a naïve fusion system. However, it is possible that our
algorithm could benefit from a more sophisticated fusion
system in some scenes. If we used our confidence values
to merge multiple depthmaps, we could potentially improve
our results. We could possibly merge the depthmaps from
only the past few frames in a video in order to get more ac-
curate results without requiring a large number of frames.

5. Acknowledgements

Omitted for review.

References
[BN07] BANDO Y., NISHITA T.: Towards digital refocusing from

a single photograph. In PG (2007), pp. 363–372. 2

[CBTT08] CHAN D., BUISMAN H., THEOBALT C., THRUN S.:
A noise-aware filter for real-time depth upsampling. In ECCV
Workshop on MMSFAA (2008). 2

[Col96] COLLINS R.: A space-sweep approach to true multi-
image matching. In CVPR (1996), pp. 358–3636. 2

[DBPT10] DOLSON J., BAEK J., PLAGEMANN C., THRUN S.:
Upsampling range data in dynamic environments. In CVPR
(2010). 2

[DD02] DURAND F., DORSEY J.: Fast bilateral filtering for the
display of high-dynamic-range images. ACM Trans. Graph. 21,
3 (2002), 257–266. 2

[DT05] DIEBEL J., THRUN S.: An application of markov random
fields to range sensing. In NIPS (2005), pp. 291–298. 2

[FCSS10] FURUKAWA Y., CURLESS B., SEITZ S., SZELISKI R.:
Towards internet-scale multi-view stereo. In CVPR (2010). 4



Blake Foster and Rui WangUniversity of Massachusetts Amherst / Hierarchical Upsampling for Fast Image-BasedDepth Estimation 7

Figure 5: A full reconstruction of the temple model [SCD∗06a]. We merged the depth maps from 6 reference views to produce
nearly 400k points. Upsampling took less than a second. On the right, we show the initial sparse point cloud.

Figure 6: A reconstruction from a single reference view. This model has over 400k points, upsampled in under a second. While
the bus has simple geometry, it is challenging because it is highly specular, and many surfaces have little texture. Again we
show the initial point cloud on the right.

Figure 7: A 360◦ reconstruction of the chapel scene from 17 reference views. This model contains nearly 4 million points,
upsampled in under 4 seconds.

Figure 8: A reconstruction of an office from 5 reference views. This model contains over 3 million points, upsampled in under
6 seconds. The third image is a closeup of the bookshelf, which shows the density of our reconstruction.

Figure 9: A dense reconstruction obtained from only 2 views through our entire pipeline. Because there are only two views, we
computed the initial point cloud with Bundler in about 30 seconds. Although Bundler provided depths for only about 0.1% of
the pixels in each image, our algorithm produced an accurate model composed of more than a million points in under a second.



8 Blake Foster and Rui WangUniversity of Massachusetts Amherst / Hierarchical Upsampling for Fast Image-BasedDepth Estimation

Figure 11: Left: An image of an office, refocused on the chair. Middle: The same image, refocused on the wall behind the right
monitor. Right: The depth map.

Figure 12: A sequence of refocused images of a toy house. From left to right, the images are focused on the tower, the left corner
of the patio, and the background. The far right image shows the depth map.

[FP09] FURUKAWA Y., PONCE J.: Accurate, dense, and robust
multi-view stereopsis. IEEE PAMI 1, 1 (2009), 1–8. 1, 2

[GFM∗07] GALLUP D., FRAHM J., MORDOHAI P., YANG Q.,
POLLEFEYS M.: Real-time plane-sweeping stereo with multiple
sweeping directions. In CVPR (2007), pp. 1–8. 2, 6

[GSC∗07] GOESELE M., SNAVELY N., CURLESS B., HOPPE
H., SEITZ S.: Multi-view stereo for community photo collec-
tions. In ICCV (2007), pp. 1–8. 2, 3

[HZ04] HARTLEY R., ZISSERMAN A.: Multiple View Geometry
in Computer Vision. Cambridge University Press, 2004. 2

[KBH06] KAZHDAN M., BOLITHO M., HOPPE H.: Poisson sur-
face reconstruction. In Proc. of SGP (2006), pp. 61–70. 2, 5

[KCLU07] KOPF J., COHEN M., LISCHINSKI D., UYTTEN-
DAELE M.: Joint bilateral upsampling. In SIGGRAPH (2007),
vol. 26, p. 96. 1, 2, 3

[MAW∗07] MERRELL P., AKBARZADEH A., WANG L., MOR-
DOHAI P., FRAHM J., YANG R., NISTÉR D., POLLEFEYS M.:
Real-time visibility-based fusion of depth maps. In ICCV (2007),
pp. 1–8. 2, 4

[PD09] PARIS S., DURAND F.: A fast approximation of the bilat-
eral filter using a signal processing approach. IJCV 81, 1 (2009),
24–52. 2

[PRD09] PAN Q., REITMAYR G., DRUMMOND T.: ProFORMA:
Probabilistic Feature-based On-line Rapid Model Acquisition. In
BMVC (2009), pp. 1–11. 2

[RM04] RAJAGOPALAN A., MUDENAGUDI U.: Depth estima-
tion and image restoration using defocused stereo pairs. In PAMI
(2004), vol. 26, pp. 1521–1525. 2

[SCD∗06a] SEITZ S., CURLESS B., DIEBEL J., SCHARSTEIN
D., SZELISKI R.: Multiview stereo evaluation, 2006.
http://grail.cs.washington.edu/projects/mview/. 4, 5, 7

[SCD∗06b] SEITZ S. M., CURLESS B., DIEBEL J.,
SCHARSTEIN D., SZELISKI R.: A comparison and evalu-
ation of multi-view stereo reconstruction algorithms. In CVPR
(2006), pp. 519–528. 2

[SSS06] SNAVELY N., SEITZ S., SZELISKI R.: Photo tourism:
exploring photo collections in 3d. ACM Trans. Graph. 25, 3
(2006), 835–846. 2

[TM98] TOMASI C., MANDUCHI R.: Bilateral filtering for gray
and color images. In ICCV (1998), pp. 839–846. 2

[Wei06] WEISS B.: Fast median and bilateral filtering. ACM
Trans. Graph. 25, 3 (2006), 519–526. 2

[YK06] YOON K., KWEON I.: Adaptive support-weight ap-
proach for correspondence search. PAMI 28, 4 (2006), 650–656.
2

[YP03] YANG R., POLLEFEYS M.: Multi-resolution real-time
stereo on commodity graphics hardware. In CVPR (2003), vol. 1,
pp. 211–218. 2

[ZC09] ZHANG W., CHAM W.: Single image focus editing. In
ICCV (2009), pp. 1947–1954. 2


