Hierarchical Upsampling for Fast Image-Based Depth Estimation

Blake Foster and Rui Wang*
University of Massachusetts Amherst

Figure 1: Reconstruction from 2 input images. The initial point cloud is obtained from running Bundler [Snavely et al. 2006], resulting in
depth estimates for ~0.1% of the pixels in each image within 30 seconds. Our upsampling algorithm then produces a dense reconstruction
containing more than 1 million points in less than a second. The three images on the right show the dense point cloud after reconstruction.

1 Introduction

While many stereo vision algorithms can quickly and robustly es-
timate sparse geometry from sets of photos, dense reconstruction,
where depth estimate is required at per-pixel or sub-pixel level, re-
mains a time-consuming and memory-intensive process. In this
work, we propose a fast hierarchical upsampling method for dense
image-based depth estimation. The main idea is to start from sparse
depth estimates that can be quickly computed using any existing
multiview stereopsis tool, then iteratively upsample the depth val-
ues to obtain a dense reconstruction consisting of millions of points.
Using a GPU-based implementation, the upsampling algorithm can
perform up to 15 images per second. The results can be directly
used for 3D modeling applications; in addition, they can be used to
digitally manipulate the depth-of-field effects in the input images in
order to simulate refocusing.

2 Our Approach

Given a set of high-resolution images, we first run multiview stere-
opsis on downsampled images (at ~300 pixels in either dimension)
to quickly obtain a sparse point cloud. One possibility is to run the
Bundler software [Snavely et al. 2006], which computes structure-
from-motion to recover camera parameters, while simultaneously
outputting a sparse point cloud representing the scene geometry.

Next, we combine the high-resolution color images with the sparse
point cloud to obtain a dense reconstruction. This is achieved us-
ing an algorithm inspired by joint bilateral upsampling [Kopf et al.
2007]. To begin, we select a set of reference views R from the in-
put images. For each R, we compute a sparse depth map Ds by
projecting the sparse 3D points to the view. We then use joint bi-
lateral upsampling to estimate a depth value for every pixel in R.
Specifically, the depth value of an unknown pixel p is computed as a
linear sum of its valid neighbor pixels (i.e. pixels with known depth
values), weighted by both the spatial and color similarities. The in-
tuition is that pixels with similar colors in a local neighborhood are
likely to have similar depth values. The upsampling equation is:

Du(p) = 75 X 4ea Dy(q)f(lp—all) g(IIR(p) — D ()I|) (1)

where p is a target pixel, f is the spatial kernel, g is the range kernel,
Q is the spatial support, g is a pixel in €2, i is the normalization

factor, D, and D, are the upsampled and the sparse depth maps

*e-mail: {blfoster, ruiwang} @cs.umass.edu

Dense depth map
(output

Sparse depth map

Image (input)

vvvvvvvv level i

- level i+1

! . e l@VEL §42

Figure 2: lllustration of hierarchical upsampling. At each level i,
the reconstructed depth map at level DL s upsampled under the
guidance of image R' to fill in the missing depth values in D".

w—- DOWn-sampling

Up-sampling

respectively, R is the color image, and D79 is the color of g stored
in the sparse depth map.

For high-resolution inputs, the spatial neighbor size €2 typically has
to be large. To improve the algorithm efficiency, we adopt a hierar-
chical approach. Figure 2 illustrates the process. First, we generate
image pyramids for both the image R and the sparse depth map D.
For R we downsample k levels using a 2x2 box filter; and for D
we downsample k£ + 1 levels using a min filter. Next, the algorithm
goes through k iterations from the bottom level. During each iter-
ation, we use Equation 1 to upsample the depth values from D!
to D*, guided by the pixel colors in R’. For the newly interpolated
pixels, we use R’ to initialize their colors, which are further stored
in the depth map. The algorithm then proceeds to the next level.

Results We have implemented our algorithm on modern GPUs.
On an NVIDIA GTX 280, our implementation can process up to
15 images per second at 640 x 480 resolution. Figure 1 shows an
example of reconstruction from 2 input images. The results can be
used directly for 3D modeling applications. In addition, the dense
depth maps recovered can be used to for digital refocusing. Refer
to the supplemental video for demos of both.

References

KOPF, J., COHEN, M. F., LISCHINSKI, D., AND UYTTENDAELE,
M. 2007. Joint bilateral upsampling. ACM Trans. Graph. 26, 3.

SNAVELY, N., SEITZ, S. M., AND SZELISKI, R. 2006. Photo
tourism: exploring photo collections in 3d. ACM Trans. Graph.
25, 3, 835-846.



