Lecture 1: Introduction

Rui Wang
What is it about?

- General introduction to techniques behind 2D and 3D graphics.

- **Theory**: fundamental mathematics and algorithms underlying modern graphics systems and techniques.

- **Practice**: be able to write reasonably complex 3D graphics programs using Java and OpenGL.

- **NOT** about learning software packages such as Maya, 3D Max or Photoshop.
What is it about?

Topics:
- Image representation and processing
- 2D, 3D modeling
- Standard graphics pipeline and OpenGL.
 - Model and View Transformations
 - Rasterization
 - Shading and Textures
 - Programmable shaders
- Ray tracing
- Additional topics: camera basics, 3D scanning and 3D printing, HDR, global illumination
Topics

- 2D Graphics
 - How to represent an image?
 - How to represent colors?
 - Image sampling and quantization
Topics

- 2D Graphics
 - Basic image adjustments
 - Brightness, contrast, saturation
 - Image filtering, convolution
 - Blur, sharpen, edge detection
 - Image transformation (warp)
 - Image compression
Assignment 1: Image Processing

- Basic adjustment, Dithering, Filtering
Assignment 1

- Image Mosaic
Assignment 1

- Depth Dependent Blur
Topics

- 2D/3D Modeling
 - Curved lines: Bezier, B-Spline, NURBS
 - Curved surfaces
 - Polygonal mesh, Subdivision surface
Assignment 2

- **2D/3D Modeling**
 - Curved lines: **Bezier, B-Spline, NURBS**
 - Curved surfaces
 - Polygonal mesh, **Subdivision surfaces**

![Diagram of Bezier, B-Spline, and NURBS curves](image)

![Examples of polygonal mesh and subdivision surfaces](image)
Assignment 2: Curves and Surfaces
Topics

- Modern Graphics Pipeline
 - Transformation
 - Rasterization, hidden surface removal
 - Illumination and shading
 - Texture mapping
 - Programmable shaders
 - OpenGL
Assignment 3: Hierarchical Modeling
Topics

- Ray Tracing
 - Ray casting
 - Recursive ray tracing
 - Shadows, reflections, refractions
 - Stochastic ray tracing
Assignment 4

- Ray Tracing
 - Ray casting
 - Recursive ray tracing
 - Shadows, reflections, refractions
 - Stochastic ray tracing
Final Project: OpenGL Scene

- Open-end, many students will probably choose to implement a 3D game
- Completed in groups of two
- In-class presentation
Final Project: OpenGL Scene

Some excellent examples from students who took this class in the past:
Additional Topics

- Camera Basics and Digital Photography
 - High dynamic range imaging
Additional Topics

- Global Illumination
Additional Topics

- 3D Scanning and printing
Related Courses

- CmpSci 474: Advanced Image Synthesis
- Computer vision, computational geometry, robotics ...
- 3D animation, web animation ...
Prerequisites

- Be familiar with Java programming (CMPSCI 187); for most assignments, we will provide starter code in Java.

- Be familiar with basic linear algebra (MATH 235), in particular vector and matrix arithmetic.

- Self-learning: you will learn and practise using OpenGL mostly by yourself.
Workload

- This is a fun course, but it also requires your efforts:
 - 4 programming assignments (every 2 weeks)
 - 1 mid-term exam
 - 1 final project (4 weeks)
 - Various Spark quizzes

- You will have to work hard, but you will learn the real stuff; grading is generous.
Suggestions

- Come to every class!
- Do quizzes.
- Start early on each assignment.
Logistics

- **Class Wikipage**
 (Note that this is not department twiki)
 If you forget, link from my homepage: http://www.cs.umass.edu/~ruiwang
 Or from the department 'courses' page

- **Class email** (goes to everyone)
 cmpsci-473-01-fal10@courses.umass.edu
Logistics

- Submission instructions
 - All assignments are due on Tuesdays at 11:00pm (but you have till midnight to upload your assignments in SPARK).

- Late policy
 - Up to 48-hour extension with penalty

- Academic honesty
- Collaboration policy
- Read the course syllabus!!
Logistics

- Textbooks
 - Readings are listed on the webpage.
Logistics

- Office Hours
 - Me:
 - Thur 4-5pm, CS 270
 - Moe Mattar:
 - Mon 4-6pm, CS 256
 - All assignments are due on Tuesdays.
Logistics

- Spark
 - Submission
 - Remember that you have to click on the Submit button!
 - Quizzes
 - All due on Thursdays before class.
- Calendar
- Discussion forum
Announcement

- Warm-up assignment due in a week
- 1 written question + 1 programming task
- Will be graded but **not** counted towards final grade
- Due on Sep 14 at 11:00pm

OpenGL Teapot!!!
How-to

- Make sure Java SDK and JOGL work
 - Install JOGL 1.1.1, not 2.0!
 - We recommend you to use an IDE such as Eclipse or Netbeans
 - Add JOGL as external jar files
 - Set your PATH variable
 - If the window appears gray initially, use this Java VM parameter:

 -Dsun.java2d.noddraw=true
What is Computer Graphics?

- Sliced by specialty
 - Imaging: representing 2D images
 - Modeling: representing 3D objects
 - Rendering: building 2D images from 3D models
 - Animation: simulating changes over time
 - Hardware: computer architecture for graphics
What is Computer Graphics?

- Sliced by specialty
 - Imaging: *representing 2D images*
 - Modeling: *representing 3D objects*
 - Rendering: *building 2D images from 3D models*
 - Animation: *simulating changes over time*
 - Hardware: *computer architecture for graphics*

Computer Graphics = the field of visual computing
What is CG?

- Sliced by task
 - Creating pictures on a computer
 - Interacting with those pictures
 - Drawing those pictures faster
 - Displaying those pictures bigger, brighter
 - Video games
 - Visualization of complex data
 - Simulating illumination phenomena
 - Simulating the real world (plants, animals, volcano...)
 - Acquiring real-world geometry
 - Breaking stuff
 - ...

Why is CG cool?

- Interdisciplinary
 - Physics, Math, Art, Psychology, Programming...

- Visual

- Interactive

- Work can be demoed to technically illiterate friends

- Money
 - Video games: $10.5B (2004)
Applications

- Entertainment (passive, active)
- Graphics User Interface
- Interaction Techniques
- Computer Aided Design
- Visualization
- Photography
- Training
- Education
- Art
-
Entertainment (passive)

Final Fantasy (Square, USA)
Entertainment (passive)

Wall E (Pixar)
Entertainment (passive)

Kung Fu Panda
(Dreamworks)
Entertainment (passive)

Star Wars *(Special Effects by: Industrial Light & Magic)*
Entertainment (active)

Doom III (ID Software)
Entertainment (active)

Age of Empire (Microsoft)
Graphical User Interfaces

Window system and large-screen interaction
(François Guimbretière)
Computer Aided Design (CAD)

Industrial Design and Prototyping
Scientific Visualization

Airflow around a Harrier Jet (NASA Ames)
Scientific Visualization

Compressible Turbulence (Lawrence Livermore National Labs)
Education

The Visible Human
(K.H.Hoehne)

Mathematical Surfaces
(Science Magazine Cover Sep 2006)
Art

Image Mosaic (*Rotunda, Univ. of Virginia*)
Example-Based Sketching of Human Portraits (MSRA, Microsoft, etc)